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Abstract

We study class S for locally compact groups. We characterize locally compact groups in this class
as groups having an amenable action on a boundary that is small at infinity, generalizing a theorem of
Ozawa. Using this characterization, we provide new examples of groups in class S and prove a unique
prime factorization theorem for group von Neumann algebras of products of locally compact groups in
this class. We also prove that class S is a measure equivalence invariant.

1 Introduction

Class S for countable groups was introduced by Ozawa in [Oza06]. A countable group T is said to be in class
S if it is exact and it admits a map 7 : ' — Prob(I") satisfying

Jin ([n(gkh) —g-n(k)| =0
— 00

for all g, h € I'. Equivalently, class S can be characterized as the class of all groups that admit an amenable
action on a boundary that is small at infinity (see [Oza06, Theorem 4.1]). Groups in class S are also called
bi-exact.

Class S is used in, among others, [Oza04; Oza06; OP04; CS13; PV14; CI18; CdSS16] to prove rigidity
results for group von Neumann algebras of countable groups. In [Oza04]|, Ozawa proved that the group
von Neumann algebra L(I") is solid when I" belongs to class S§. This implies in particular that for T icc,
non-amenable and in class S, the group von Neumann algebra L(T') is prime, i.e. L(I') does not decompose as
a tensor product M; ® Ms for non-type I factors M; and Ms.

In [OP04], Ozawa and Popa proved the first unique prime factorization results for von Neumann algebras
using groups in this class. Among other results, they showed that if ' = I'y x --- x I}, is a product of
non-amenable, icc groups in class S, then L(T") = L(I') ® - -- ® L(T",) remembers the number of factors n
and each factor L(T';) up to amplification, i.e. if L(T') &2 N} ® - - - ® N,,, for some prime factors Ny, ..., Np,,
then n = m and (after relabeling) L(T';) is stably isomorphic to N; for i = 1,...,n. Subclasses of class S were
used in [CS13; PV14; HV13] to prove rigidity results on crossed product von Neumann algebras L>°(X) x T

Examples of countable groups in class S are amenable groups, hyperbolic groups (see [Ada94]), lattices in
connected simple Lie groups of real rank one (see [Ska88, Proof of Théoréme 4.4]), wreath products BT with
B amenable and T in class S (see [0za06]) and Z? x SLy(Z) (see [0za09]). Moreover, class S is closed under
measure equivalence (see [Sak09]). Examples of groups not belonging to class S are product groups I' x A
with I' non-amenable and A infinite, non-amenable inner amenable groups and non-amenable groups with
infinite centre.

In this paper, we study class S for locally compact groups. We provide a characterization of groups in this
class similar to [Oza06, Theorem 4.1], we provide new examples of groups in this class and we prove a unique
prime factorization result for group von Neumann algebras of locally compact groups. We also prove that
class S is a measure equivalence invariant.

Let G be a locally compact second countable (lcsc) group. We denote by Prob(G) the space of all Borel
probability measures, i.e. the state space of Cy(G). The precise definition of class S for locally compact
groups is now as follows.



Definition A. Let G be a lcsc group. We say that G is in class S (or bi-exact) if G is exact and if there
exists a ||.||-continuous map 7 : G — Prob(G) satistying

Jim {|n(gkh) —g-n(k)|| =0 (1.1)

uniformly on compact sets for g,h € G.

In [BDV18] this property without the exactness condition was called property (S). Note that the definition
was slightly different: the image of the map 7 above was in the space S(G) = {f € LY(G)* | || f|, =1}
instead of Prob(G). However, we prove in Proposition 3.1 that this is equivalent. It is also worthwhile to note
that it is currently unknown whether there are groups with property (S) that are not exact.

Examples of lesc groups in class S include amenable groups, groups acting continuously and properly on a
tree or hyperbolic graph of uniformly bounded degree, and connected, simple Lie groups of real rank one with
finite centre. Proofs of these results can be found in [BDV18, Section 7]. It is easy to prove that groups not in
class § include product groups G x H with G non-amenable and H non-compact, non-amenable groups G
with non-compact centre and non-amenable groups G that are inner amenable at infinity, i.e. for which there
exists a conjugation invariant mean m on G such that m(E) = 0 for every compact set £ C G.

Given a locally compact group G, we denote by Cy(G) the algebra of bounded uniformly continuous
functions on G, i.e. the bounded functions f : G — C such that

Agf = flle =0 and  lpgf = fllo =0

whenever g — e. Here, A and p denote the left and right regular representations defined by (A, f)(h) = f(g~'h)
and (pgf)(h) = f(hg) respectively. We define the compactification h*G of the group G as the spectrum of
the following algebra

C(h*G) =A{f € CJ(G) | pgf — [ € Co(G) for all g € G}

and denote by v“G = h*G \ G its boundary. The compactification h*G is equivariant in the sense that both
actions G ~ G by left and right translation extend to continuous actions G ~ h*G. It is also small at infinity
in the sense that the extension of the action by right translation is trivial on the boundary v*G. It is moreover
the universal equivariant compactification that is small at infinity, in the sense that for every equivariant
compactification G that is small at infinity, the inclusion G' < G extends to a continuous G-equivariant map
h*G — G.

The following locally compact version of [Oza06, Theorem 4.1|, characterizes groups in class S as groups
acting amenably on the boundary v*G.

Theorem B. Let G be a lcsc group. Then, the following are equivalent
(i) G isin class S,
(i)  the action G ~ VG induced by left translation is topologically amenable,
(iii) the action G ~ h“G induced by left translation is topologically amenable,
(iv) the action G x G ~ CY(G)/Co(G) induced by left and right translation is topologically amenable.

The two novelties in the proof of this result are the proof of (iii) and the method we used to prove the
implication (iv)=-(i). Indeed, the original proof of Ozawa for countable groups used that G belongs to class S if
and only if there is a u.c.p map 0 : C(G) @min Ci(G) — B(L?*(Q)) satisfying 0(z @ y) — A(z)p(y) € K(L*(G)),
where A and p denote the representations of Cy(G) induced by the left and right regular representation,
respectively. This is however no longer true for locally compact groups. Indeed, for all connected groups G,
the reduced C*-algebra C;.(G) is nuclear and hence a map 6 as above always exists.

Denote by 8'G the left-equivariant Stone-Cech compactification of G, i.e. the spectrum of the algebra
C!*(@G) of bounded left-uniformly continuous functions on G. The action G ~ G by left-translation extends
uniquely to a continuous action G ~ B!*G. Moreover, G is the universal left-equivariant compactification of
G in the sense that every left-G-equivariant continuous map G — X to any compact space X with continuous
action G~ X extends uniquely to a G-equivariant continuous map A“G — X. We also prove the following
characterization of groups in class S.



Theorem C. Let G be a lcsc group. Then, G belongs to class S if and only if G is exact and there exists a
Borel map n : G — Prob(B"“G) satisfying

khm In(gkh) —g-n(k)|| =0
—00
uniformly on compact sets for g,h € G.

In the proof of this theorem, we will see that it is precisely the exactness of G that allows us to construct
the required map 7 : G — Prob(G) from a map 7 : G — Prob(B"G). This was implicitly observed before in
[BOO08, Chapter 15| for countable groups.

Using Theorem B, we prove the following new examples of locally compact groups in class S. In [Corl7],
Cornulier introduced a notion of wreath products for locally compact groups. See (4.5) on page 12 for a
short recapitulation and the notation used in this article. The following result is a locally compact version of
[0za06, Corollary 4.5].

Theorem D. Let B and H be lcsc groups, X a countable set with a continuous action H ~ X and AC B a
compact open subgroup. If B is amenable, all stabilizers Stabg (x) for x € X are amenable and H belongs to
class S, then also the wreath product B 234( H belongs to class S.

A notion of measure equivalence for locally compact groups was introduced by S. Deprez and Li in [DL14].
By [DL15, Corollary 2.9] and [DL14, Theorem 0.1 (6)] exactness is preserved under this notion of measure
equivalence. More recently, this notion was studied in more detail in [KKR17; KKR18|. It was proved that
two lcsc groups G and H are measure equivalent if and only if they admit essentially free, ergodic pmp actions
on some standard probability space for which the cross section equivalence relations are stably isomorphic.
Using this characterization, we were able to prove the following result. For countable groups this was proven
by Sako in [Sak09].

Theorem E. The class S is closed under measure equivalence.

As a consequence of this theorem, we have for instance that R? x SLy(R) and R? x SLg(Z) belong to class
S. Indeed, Z? x SLy(Z) is a lattice in both R? x SLy(R) and R? x SL2(Z). Hence, the latter two are measure
equivalent to Z2? x SLa(Z), which belongs to class S by [0za09].

In [BDV18|, the author proved together with Brothier and Vaes that the group von Neumann algebra
L(G) is solid whenever G is a locally compact group in class S. In particular, if L(G) is also a non-amenable
factor, then L(G) is prime. Combining Theorem B with the unique prime factorization results of Houdayer
and Isono in [HI17] along with the generalization [AHHM18, Application 4] by Ando, Haagerup, Houdayer,
and Marrakchi, we were able to obtain the following unique prime factorization result for (tensor products of)
such group von Neumann algebras.

Theorem F. Let G = G1 X --- X Gy, be a direct product of locally compact groups in class S whose group
von Neumann algebras L(G;) are nonamenable factors. If

LG)EN® ... ® N,

for some non-type I factors N;, then n < m. Moreover, all factors N; are prime if and only if n = m and in
that case (after relabeling) L(G;) is stably isomorphic to N; fori=1,...,n.

We prove this theorem by proving that for groups G in class S, the group von Neumann algebra L(G)
belongs to the class C(40) introduced in [HI17].

It is worthwhile to note that for many locally compact groups G, the group von Neumann algebra L(G) is
amenable or even type I. For instance, the group von Neumann algebra of a connected lcsc group is always
amenable by [Con76, Corollary 6.9]. However, the following group G due to Suzuki provides an example of a
locally compact group whose group von Neumann algebra L(G) is a non-amenable type Il factor.

Example G (Suzuki). Let Zy = Z/2Z act on Fy by flipping the generators. Then the compact group
K = erN Zo acts on the infinite free product H = ¥y Fo by letting the k'™ component of K flip the
generators in the k" component of H. The semi-direct product G = H x K satisfies the conditions of
[Suz16, Proposition| with K, = [[;Z,, ., Z2 and L, = (*;_,F2) x K. Hence, by [Suzl6, section on group
von Neumann algebras|, its group von Neumann algebra is a non-amenable factor of type II,,. Moreover, G
belongs to class S since the cocompact subgroup H does (see [BDV18, Lemma 7.2]).



Furthermore, certain classes of groups acting on trees have non-amenable group von Neumann algebras by
[HR19, Theorem C and D]. Also, [Raul9b, Theorem E and F] would provide conditions on such a group G
under which L(G) would be a non-amenable factor. In particular, for every ¢ € Q with 0 < ¢ < 1 [Raul9b,
Theorem G| would provide examples of groups in class S for which the group von Neumann algebra would be
a non-amenable factor of type III,. However, due to a mistake in [Raul9b, Lemma 5.1], there is a gap in the
proofs of these results (see also [Raul9a, p 20]), and it is currently not completely clear whether these results
hold as stated there.

2 Preliminaries and notation

Throughout this article, we assume all groups to be locally compact and second countable. We denote by
A¢ the left Haar measure on such a group G. All topological spaces are assumed to be locally compact and
Hausdorff. All actions G ~ X are assumed to be continuous.

Let X be a locally compact space. We denote by M (X) the space of complex Radon measures on X. We
equip this space with the norm of total variation, or with the weak® topology when viewing it as the dual
space of Cy(X). The Borel structure from both topologies agree. We denote by M (X )™ the space of positive
Radon measures and Prob(G) the space of Radon probability measures. If a group G acts on X, then for
g € G and u € M(X) we denote by g - the measure defined by (g - u)(E) = u(g~1E) for all Borel sets
ECX.

2.1 Topological amenability
We recall from [Ana02| the notion of topological amenability for actions of locally compact groups.

Definition 2.1. Let G be a lcsc group, X a locally compact space and G ~ X a continuous action. We say
that G ~ X is (topologically) amenable if there exists a net of weakly™ continuous maps p; : X — Prob(G)
satisfying

lim|lg - pi(2) — pi(ga)l = 0 (2.1)
uniformly on compact sets for z € X and g € G.

By [Ana02, Proposition 2.2], we have the following equivalent characterization.

Proposition 2.2. Let G be a lcsc group, X a locally compact space and G ~ X a continuous action. Then,
the following are equivalent

(i) G~ X is amenable

(i)  There exists a net (f;); in Co(X x G)T satisfying lim; fG fi(z,s)ds = 1 uniformly on compact
sets for x € X and

lim / file.g ) — filge.s)| ds = 0 (2.2)
g G

uniformly on compact sets for x € X and g € G.
Remark 2.3. Obviously, when X is o-compact, we can replace nets by sequences in the above definition and
proposition.
Remark 2.4. If X is compact, then we can take a sequence (f,), in C.(X x G)T satisfying (2.2) and such
that [, fn(z,s)ds =1 for every € X and every n € N.
The following result shows that if X is a o-compact space, then one can assume that the convergence in
(2.1) is uniform on the whole space X, instead of only uniform on compact sets of X.

Proposition 2.5. Let G be a lcsc group, X a o-compact space and G ~ X a continuous action. The action
G ~ X is amenable if and only if there exists a sequence of weakly* continuous maps p, : X — Prob(G)
satisfying

Jim g - pn (2) = pn(g)l| = O
uniformly for x € X and uniformly on compact sets for g € G.
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Proof. Suppose that G ~ X is amenable. Take an arbitrary compact set K C G and an € > 0. It suffices to
construct a weakly* continuous map p : X — Prob(G) satisfying

g - p(z) — pu(gr)l| <e (2.3)

forall g € K and all x € X.

Without loss of generality, we can assume that K is symmetric. Take an increasing sequence (L, )n>1
of compact subsets in X such that X = (J,, L,. After inductively enlarging L,, we can assume that
L, Cint(L,41) and gL,, C L, for every g € K. Using the amenability of G ~ X, we can take a sequence of
weakly* continuous maps v, : X — Prob(G) satistying ||g - vn(z) —vp(g9z)|| < 27" forall g € K, z € L,, and
n € N\ {0}. Set L,, = for n < 0. Fix n > 1 such that 14/n < ¢ and take continuous functions fx : X — [0, 1]
such that fi(z) = 1 whenever z € Ly, \ Ly_, and fi(z) = 0 whenever € Ly_,,—1 or € X \ Lgy1.

For every x € X, we denote |z| = max{k € N |z ¢ L;}. We set

|z +n

i(x) =D fr@ve(@) = fla)@)We) (@) + fojsnsr (@ Vapanii (@) + D vi(@).
k=0 k=|z|+1

for x € X and define p : X — Prob(G) : z — fa(x)/ ||a(x)|. Clearly, p is weakly* continuous. To prove
that u satisfies (2.3), fix # € X and g € K. Since gLy C Ly,1 and g 'Ly C Ly, for every k € N, we have
|z] — 1 < |gz| < |z| + 1 and hence

|z|4+n
lg - fi(z) — ilgn)| <6+ > g velx) — vilgz)| <7,
k=|z|+1
where we used that g € K and « € Ly, for k = |z| + 1,...,|z| + n. Hence,
lg - n(z) = plge) | € ot |lg - ila) — filga)]| < — <
g- (@) — plgr)| < = g-i(x) — figr)|| < — <e
[|a()]| n

as was required. O

The following result can for instance be found in [BO08, Exercise 15.2.1] for discrete groups. The proof for
locally compact groups is exactly the same.

Lemma 2.6. Let G be a lcsc group, X a locally compact space and G ~ X a continuous action. Then,
G ~ X is amenable if and only if the induced action G ~ Prob(X) is amenable, where Prob(X) is equipped
with the weak™® topology.

2.2 Exactness

The following definition of exactness was given by Kirchberg and Wassermann in [KW99a]. Recall that a
G-C~-algebra is a C"-algebra A together with a ||.||-continuous action G ~ A by *-isomorphisms. We denote
by A X, G the reduced crossed product.

Definition 2.7. A lesc group G is called ezact if for every G-equivariant exact sequence of G-C*-algebras
0—>A—-B—-C—0,

the induced sequence
0—+A%x,G—-Bx,G—-Cx,G—0

is exact.

It is an immediate consequence of this definition that the reduced group C*-algebra C(G) is exact
whenever G is exact. The converse is also true for discrete groups (see [KW99a, Theorem 5.2]), but is still
open for locally compact groups. The class of exact groups is very large and contains among others all



(weakly) amenable groups [HK94; BCL17], linear groups [GHWO05] and hyperbolic groups [Ada94]. Examples
of non-exact groups were given by Gromov [Gro03; AD08] and Osajda [Osal4].

As before, we denote by G the spectrum of the algebra C}*(G) of bounded left-uniformly continuous
functions on G. By [Ana02, Theorem 7.2] and [BCL17, Theorem A] we have that a group G is exact if and
only if G admits an amenable action on some compact space, or equivalently if the action G ~ "G induced
by left translation is amenable.

3 Class S and boundary actions small at infinity

The main goal of this section is to prove Theorems B and C, but we first need the following equivalent
characterizations of the existence of a map satisfying (1.1). Note that point (i) in the proposition below is
property (S) in the sense of [BDV18].

As before, we denote by S(G) the space {f € L'(G)* | ||f[; = 1} of probability measures on G that are
absolutely continuous with respect to the Haar measure. There is an obvious G-equivariant norm-preserving
embedding §(G) — Prob(G).

Proposition 3.1. Let G be a lcsc group. Then, the following are equivalent.

(1)  There is a |.||;-continuous map 1 : G — S(G) satisfying
Jim(n(gkh) — g -n(k)[l, =0
—00

uniformly on compact sets for g,h € G.

(it)  There exists a ||.||-continuous map 1 : G — Prob(G) satisfying

|=0

Jim [n(gkh) —g-n(k)l
—00

uniformly on compact sets for g,h € G.
(i1i) There exists a sequence of Borel maps n, : G — M(G)™ satisfying

lim inf lim inf ||, (k)[| > 0
and
lim limsup sup |[n,(gkh) —g-n. (k)| =0

N—=0 koo g,heK

for all compact sets K C G.

Proof. The implications (i)=-(ii)=-(iii) are trivial. We prove the reverse implications (iii)=-(ii)=-(i).
First, we prove (ii)=-(i). The proof follows the lines of [Ana02, Proposition 2.2]. Let 1 : G — Prob(G) be
as in (ii). We construct 77 : G — S(G) as follows. Take an f € C.(G)" with [, f(t) dt = 1. Define

7i(g)(s) = /G F(ts) dn(g) (1)

for s,g € G. A similar calculation as in [Ana02, Proposition 2.2] checks that 7(g) € S(GQ) for every g € G,
that 77 is ||.||;-continuous and that ||7(gkh) — g - 7(k)|l; — O uniformly on compact sets for g, h € G whenever
k — oo.

The implication (iii)=-(ii) follows from the technical lemmas 3.2 and 3.4 below applied on the spaces
X =Y = H = G with the actions G x G ~ X and G ~ Y by (g,k) -z = gek~! and (g,h) -y = gy for
g,keGre XandyeY. O

The following is a more abstract and slightly more general version of the trick in [BO08, Exercise 15.1.1].
It will be used several times in this article.



Lemma 3.2. Let X and Y be o-compact spaces and G a lcsc group. Suppose that G ~ X and G ~Y are
continuous actions. If there exists a sequence of Borel maps n, : X — M(Y)T satisfying
lim limsup sup |[n,(92) — g - nn(2)[| =0 (3.1)
n—=0 gsco geEK

for all compact sets K C G and
lim inf lim inf ||n,, ()| > 0.

n—00 Tr—r00

Then, there exists a Borel map n: X — Prob(Y) such that

lim [|n(gz) —g-n(z)[ =0 (3.2)
Tr—r0o0
uniformly on compact sets for g € G. Moreover, if the maps 1, are assumed to be ||.||-continuous, then also 7
can be assumed to be ||.||-continuous. If the maps 0, are weakly* continuous and the maps x — ||n,(z)|| are

continuous for every n € N, then also n can be assume to be weakly* continuous.

Proof. After passing to a subsequence and replacing values of 7, on compact sets, we can assume that there
exists a § > 0 such that ||n,(z)| > ¢ for all n € N and all z € X. Set 7, (x) = 9 (z)/ ||nn ()] for all z € X.
Note that (7,), still satisfies (3.1) for all compact sets K C G. Moreover, the maps 7, are ||.||-continuous
whenever 7, is ||.|[-continuous. If the maps 7, are weakly® continuous and the maps = — ||n,(z)| are
continuous, then also the maps 7, are weakly* continuous.

Take an increasing sequence (K, ), of compact symmetric neighbourhoods of the unit e in G such that
G =, int(K,). After passing to a subsequence of (7, ), we find compact sets L,, C X such that

7 (g2) — g - fin(2)]| < 2771

for all g € K, and z € X \ L,,. After inductively enlarging L,,, we can assume that the sequence (L), is
increasing, that L, C int(Ly41), that gL, C L,4; for all g € K,, and that X = |J,, L,,. Moreover, we can
also assume that Ly = 0.

For every z € X, we denote |z| = max{n € N |z ¢ L,}. Furthermore, we denote h(n) = |n/2| + 1. For
all n > 1, we take a continuous function f, : X — [0, 1] such that f,(z) =1if x € Lg,, \ L, and f,(z) =0 if
€ Ly_yoraé€ X\ Lapt1. Take fo: X — [0,1] such that fo(z) =1ifx € Ly and fo(z) =0if 2 € X \ Lo.
For z € X, we set

+oo
p(z) = ful@)in(x)
k=0

kd

= fr(lz)=1() Tz -1(@) + flz+1(2) D241 (@) + Z 7k (2)-
k=h(z])

Now, define n : X — Prob(Y) by n(z) = u(x)/||u(x)|. Note that 7 is ||.||-continuous (resp. weakly*
continuous) whenever the maps 7, are.

To prove that 7 satisfies (3.2), take an ¢ > 0 and a compact subset K C G. Take ng > 1 such that
K C K, and take n; > max{2ng,32/c}. We claim that ||n(g-x) — g - n(z)|| < € whenever z € G\ L,,, and
g € K. Indeed, fix g € K and 2 € G\ L,,. Take n = |z|. Since gL,+1 C L2 and ¢g~'L,,_; C L,, we have
that n — 1 < |gx| < n+ 1. Hence,

n

ln(gz) —g-p(@)| <6+ > lilgz) — g - fe(x)] <8,
k=h(n)

since g € Ky and € X \ Ly for k = h(n),...,n. We conclude that

-8 <e¢

S|

2
n(gx) —g-n(z)|| < @l lu(gx) — g - p()] <

which proves the claim. O



Remark 3.3. Using almost exactly the same proof as above, one can actually prove the following slightly more
general result: suppose that for every € > 0 and every compact set K C G, there exists a compact set L C X
such that for all compact sets L’ C X, there exists a map 7' : X — M(Y)™ such that

' (gz) — g - ' ()|
(deall

whenever g € K and z € L'\ L. Then, there exists a map 7 : X — Prob(Y) as in (3.2). Indeed, using the
notation of the proof, we can take the compact sets L, C X and the maps n, : X — M(Y)™T such that
|7 (gx) — g - fn(2)]| < 277F! for all g € K,, and @ € La, \ Ly, where again 7, (z) = 7, (2)/ |7, (z)||. The rest
of the proof holds verbatim.

<e (3.3)

The following lemma will be used several times to replace Borel maps by continuous maps.

Lemma 3.4. Let H and G be lcsc groups and Y a locally compact space. Suppose that G " H and G ~Y
are arbitrary continuous actions. If there exists a Borel map n: H — Prob(Y') satisfying

hli_)n;o Hn(ozg(h)) —g- n(h)H =0 and hli_{rgo Hn(ag(h)k) — n(ag(hk))H =0

uniformly on compact sets for g € G and k € H, then there exists a |.||-continuous map 7 : H — Prob(Y)
map satisfying
lim_||7(ag(h)) = g i(h)]| =0

h—o0

uniformly on compact sets for g € G.

Proof. Fix a compact neighbourhood K of the unit e in H with Ag(K) = 1. We define 7 : H — Prob(Y") by

ii(g) = /K n(gh) dk.

One check that the map 77 satisfies the conclusions of the lemma. O
We are now ready to prove Theorem B.

Proof of Theorem B. First, we prove (i)=-(ii). Let n : G — Prob(G) be a map as in the definition of class S.
Consider the u.c.p. map 7. : CI*(G) — C(h*G) defined by

- / £(s) dn(g)(s)
G

for f € C!*(G) and g € G. A straightforward calculation checks that indeed n.(f) € C(h*G) C C#(G) for every
f € CH(@). Moreover, n.(Ag f)—=Ag(n+f) € Co(G) for all f € CI*(G). Hence, composing with the quotient map
7: C(h'G) — C(V'G) = C(h"G)/Co(G) yields a G-equivariant u.c.p. map 7o, : C{*(G) — C(v*G). By
dualization, we obtain a weakly* continuous G-equivariant map v“G — Prob(S!“G) given by 2 + 6, o w0 7.
Since G is exact, the action G ~ G is amenable and hence so is G ~ Prob(8G) (see Lemma 2.6).
Composing with the G-equivariant map v“G — Prob(B/“G) above, yields that G ~ v*G is amenable.

Now, we prove (ii)<>(iii). The implication from right to left is trivial. To prove the other implication, take
an arbitrary compact subset K C G and an ¢ > 0. By Proposition 2.2, it suffices to construct a function
h € Ce(h"G x G)* such that [, h(x,s)ds =1 for every z € h*G and

/ |h(z, g7 s) — h(gz,s)|ds < e (3.4)

for all x € h*G and g € K.
By Proposition 2.2 and Remark 2.4, we find a function f € C.(v*G x G)* with fG x,s)ds = 1 such
that [, |f(z,97's) — f(gx,s)|ds < e/2 for all 2 € V"G and g € K. By the Tietze Extension Theorem, we

can extend f to an f € C.(h*G x G)*. Since

timsup [ |F(wig™s) = Flar o)l ds < sup_sup [ [7(0.g75) = flar.s)lds < 5
) G
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for every net (z;); in G converging to an x € v*G, we can take a compact set L C G such that

g7 = Flamolds < 5.
for all x € h*G\ L and g € K. After possibly enlarging L and renormalizing f, we can moreover assume that
Jo fz,s)ds = 1.

Fix a function a € C.(G)* with [, a(s) ds = 1. Using Lemma 3.5 below, we can take a function ¢ € Ce(G)*
such that ¢|p =1 and |¢(gh) — ((h)| < 5/4 for h € G and g € K. Now, define h € C.(h"G x G) by

h(z,s) = {g(x)a(xls) + (1 — C(z))f(x, s) ifzeQq,
) f(z,s) if x € VUG,

A straightforward calculation shows that h satisfies (3.4).

Next, we prove (ii)=(iv) Denote by X the spectrum of A = C}/(G)/Cy(G). Since C(h"G) C C¥(G), we
have a natural embedding C(v*G) — A, which in turn induces a continuous map ¢, : X — v*G. Note that
¢ is G x G-equivariant with respect to the actions induced by left and right translation. Similarly, we get a
G x G-equivariant map ¢, : X — /G, where v*G denotes the spectrum of the algebra

Cv'G) ={f e CJ(G) | \gf — [ € Co(G)}

and the action G x G ~ 1!G is induced by left and right translation. By assumption, the action G x1 ~ V"G
is amenable, and by symmetry so is 1 x G ~ v*G. Hence, the diagonal action G x G ~ v*G x V'G is also
amenable. Now, the conclusion follows from the G x G-equivariance of the map ¢, x ¢, : X — v*G x V'G.

Finally, we prove (iv)=(i). By [Ana02, Theorem 7.2], the group G is exact. Denote again by X the
spectrum of A = C}'(G)/Cy(G). Denoting by f“G the spectrum of C}(G), we get X = G\ G. By
Proposition 2.2 and Remark 2.4, we can take a sequence (f,), of functions in C,(X x G x G)* such that
Jovg fa(z,s,t)dsdt =1 for all z € X and n € N, and such that

lim |folz, g7 s,k ) — fu((9,h) -2, 8,t)|dsdt =0 (3.5)

n—oo GxG

uniformly for z € X and uniformly on compact sets for g, h € G. As before, the Tietze Extension Theorem
yields extensions f,, € C.(8“G x G x G)T of each f,,. For each x € 8“G and n € N, we define n,,(z) € M(G)*
as the measure with density function s — f G fn(x, s,t) dt with respect to the Haar measure on G. This yields
||.|]-continuous maps 7, : 8“G — M(G)™. By (3.5), the restrictions of 7, to G C 8“G satisfy the conditions
of Proposition 3.1 (iii). O

In the proof above, we used the following easy lemma.

Lemma 3.5. Let G be a lcsc group. For all compact subsets K, L C G and all € > 0, there exists a continuous
function f € C.(G) satisfying flr =1 and

|f(kgk') — f(g)| < e
fork, k' € K and g € G.

Proof. We can assume that K is symmetric and that e € int(K). Take continuous functions f,, : G — [0, 1]
such that fn( )=1for g€ K"LK" and supp f, C K" LK"*!. Take N € N such that 1/N < /4 and set

=N Zk 0 fn 0
We end this section by proving Theorem C.

Proof of Theorem C. The implication from left to right is trivial. To prove the converse implication, note
that by exactness of G and Lemma 2.6, the action G ~ Prob(f'G) is amenable. Take a sequence 0,
Prob(B"G) — Prob(G) such that

Jim {09 - 1) = g - On(p)ll =0



uniformly for ;1 € Prob(8"G) and uniformly on compact sets for g € G. Now, for the composition 7, = 6, on
we get

1 (gkR) = g - ()|l < [In(gkh) = g - n(k)|| + [|6n (g - n(k)) — g - 0n(n(k))|
<ln(gkh) —g-nk)||+  sup  ||6nlg- 1) —g- 0n (1) ]|
nEProb(Biv Q)
whenever g, h, k € G. It follows that (7, ), satisfies the conditions of Proposition 3.1 (iii). O

4 Locally compact wreath products in class S

In this section, we prove Theorem D. Before we start the proof of this result, we need a few preliminary
results. The first is a locally compact version of [BO08, Lemma 15.2.6]. This result can be proven in a similar
way as in [BO08, Lemma 15.2.6]. However, we provide a different proof, not requiring exactness.

Proposition 4.1. Let G be an lcsc group and K a closed, amenable subgroup. If there exists a Borel map
n: G — Prob(G/K) such that

Jm ([n(gkh) —g-n(k)| =0
—00

uniformly on compact sets for g,h € G. Then, G has property (S), i.e. there exists a ||.||-continuous map
7 : G — Prob(G) satisfying (1.1).

Proof. Using Lemma 3.4, we can assume that 7 is ||.||-continuous. The proof then follows easily from Lemma 4.3
below. 0

Let G be a group and H C G a closed subgroup. Denote by p : G — G/H the quotient map. Let
o:G/H — G be a locally bounded Borel cross section for p, i.e. a Borel map satisfying p o o = Idg,y that
maps compact sets onto precompact sets (see [Mach2, Lemma 1.1]). We identify G with G/H x H via the
map

¢:G—G/HxH:gw (gH,0(gH) 'g). (4.1)

Under this identification the action by left translation is given by k- (¢H,h) = (kgH,w(k,gH)h), where
w(k,gH) = o(kgH) ‘ko(gH).

The identification map ¢ is not continuous, but it is bi-measurable and maps (pre)compact sets to
precompact sets. This allows us to identify the spaces Prob(G) and Prob(G/H x H) via the map p +— ¢ p.
Note that this identification map is continuous with respect to the norm topology on both spaces, but not
with respect to the weak® topology on both spaces. We use the above identifications in the following two
lemmas.

Lemma 4.2. Let G be a lesc group and H C G a closed, amenable subgroup. Let (vy,), be a sequence in
Prob(H) such that ||h - vy, — vy|| = 0 uniformly on compact sets for h € H whenever n — oo. Then,

lim [k (p@vy) = (h-p) @l =0
n—oo
uniformly on compact sets for g € G and uniformly on weakly* compact sets for p € Prob(G/H).
Proof. Fix compact subsets K C G and £ C Prob(G/H), and take € > 0. A straightforward calculation yields

Ik (1 ® vn) — (k- 1) ® v < /G |, lethgH) v =i o)

for all p € Prob(G/H), all k € G and all n € N. Take a compact set L C G/H such that u(L) > 1 — ¢ for all
p € L. Since w maps compact sets to precompact sets, we find an ng € N such that |w(k,gH) - vy, — vy < e
for all n > ng, all k € K and all gH € L. Then, ||k- (t®@uvy) — (k- p) @ vy < 3¢ for n > ng, k € K and
€ L, thus proving the result. O
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Lemma 4.3. Let G and H be lcsc groups, m : G — H a continuous morphism and K C H a closed,
amenable subgroup. Let G ~ X be a continuous action on some o-compact space X. Let G ~ Prob(H) (resp.
G ~Prob(H/K) ) be defined by g- = w(g)-p for g € G and p € Prob(H) (resp. pn € Prob(H/K) ). If there
exists a weakly* continuous map n: X — Prob(H/K) such that

Jim_[|n(gz) — g - n(@)| =0
uniformly on compact sets for g € G. Then, there exists a Borel map 7 : X — Prob(H) such that
lim [li(gz) — g (@) =0

uniformly on compact sets for g € G. Moreover, if n is assumed to be ||.||-continuous then 7] can also be
assumed to be ||.||-continuous.

Proof. Fix a locally bounded Borel cross section o : H/K — H for the quotient map p: H — H/K, and
identify H with H/K x K and Prob(H) with Prob(H/K x K) as in (4.1).

Take a sequence (), in Prob(K) such that ||k - v, — v,|| — 0 uniformly on compact sets for k € K
whenever n — oco. Using Lemma 4.2, we construct maps as in Remark 3.3 as follows. Fix an € > 0 and a
compact C C G. Take a compact L C X such that ||n(gz) — g -n(z)|| < e forall g€ C and x € X \ L. Fix
any compact set L' C X. Applying Lemma 4.2 to the weak* compact set n(L’), we find an n € N such that
(g n(x) @ v —g- (n(z) ®vy)|| <& forany z € L' (92) @ v — g+ (n(x) @ vy)|| < 2¢
for any g € C and any « € L'\ L. We conclude that the map ' : X — Prob(H) defined by n'(z) = n(z) ® v,
is as in (3.3). Moreover, if 7 is ||.||-continuous, then so is . O

The second result that we need before proving Theorem D characterizes when a semi-direct product
belongs to class S. By definition G = B x H belongs to class S whenever it is exact and there exists a
map 7 : G — Prob(G) satisfying ||((a, k)(b,h)(a’, k")) — (a, k) - (b, h)|| — 0 uniformly on compact sets for
(a,k),(a', k") € G whenever (b,h) — co. The result below shows that is suffices that there exist two such
maps one of which satisfies the convergence above when b — co and the other when h — oc.

Proposition 4.4. Let G = B %, H be a semi-direct product of lcsc groups. Then, G is in class S if and only
if B and H are exact, and there exists Borel maps pi: G — Prob(G) and v : G — Prob(G) such that

blirgo H/J,((a, k) (b, h)(a/7 k/)) — (a, k) - u(b, h)“ =0 (4'2)

uniformly on compact sets for a,a’ € B and k,h, k' € H, and such that

lim [|u((a, k) (b, h) (@', K)) — (a,k) - (b, k)| (4.3)

h—o0
uniformly for b € B and uniformly on compact sets for a,a’ € B and k, k' € H.

Proof. The only if part is immediate. To prove the converse, note first that G is exact as an extension of an
exact group by an exact group (see [KW99b, Theorem 5.1]). Fix a compact set K C G and an € > 0. By
Proposition 3.1 (iii), it suffices to find a Borel map 7 : G — Prob(G) and a compact set L C G such that

[n((a, k)(b,h)(a,K')) — (a,k) - n(b, h)|| < e (4.4)

for all (a, k), (a’, k') € K and all (b,h) € G\ L.
Since K is compact, we can take compact subsets Kg C B and Ky C H such that

Kg{(b,h>|bEKB7hEKH}

By assumption, we can take a compact set Ly C H such that |lv((a,k)(b,h) (', k) = (a, k) - v(b,k)|| <e/2
whenever a,a’ € Kp, be B, k,k' € Ky and h € H\ L.

Using Lemma 3.5, we take a function f € C.(H) such that f(h) = 1 for h € Ly and |f(khk') —
f(h)| < 6/4 whenever h € H and k, k' € Ky. Set Ly = supp f. Take a compact set Lg C B such that
| ((a, k) (b, h) (0’ K)) — (a,k) - bh||<6/2wheneveraa € Kp,be G\ Lp, k,k € Ky and h € Ly.
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Now, define 7 : G — Prob(G) by

n(b,h) = f(h)pu(b, h) + (1= f(h))v(b, h)

for (b,h) € G. Set L = {(b h)€G|bELB,hELH} Fix (a,k),(¢’,k') € K and (b,k) € G\ L. Denote
g=(b,h)7g'=( k)(b,h)(a’, k") and ¢ = (a, k). We have

In(g") 9" - n@)ll < F®) ||u(g) = g" - wl@)]| + (1= £() |v(g) = 9" (o) + 5

We are in one of the following three cases: either h € H\ Ly, or h € Ly \ Ly and b€ B \ Lp,or he€ Ly
and b € B\ Lp. In all three cases (4.4) holds. O

Remark 4.5. Note that (4.2) is equivalent with the existence of a map fi : B — Prob(G) satisfying
lim [|fi(aba’) —a-a(b)]] =0  and lim ||fi(an(b)) — h- f(b)|| =0
b—o0 b—oco

uniformly on compact sets for a,a’ € B and h € H. Indeed, the restriction of a map as in (4.2) satisfies the
above equations. Conversely, given a map [i as above, the map u : G — Prob(G) defined by u(b, h) = ()
satisfies (4.2).

When the group B is amenable, the previous result specializes to the corollary below. In the setting of
countable groups, this result was proved by Ozawa in [Oza06, proof of Corollary 4.5] and [Oza09, Section 3].
However, the proof provided there does not carry over to the locally compact setting, since, as we explained in
the introduction, the characterization of class S in terms of a u.c.p. map ¢ : C:(G) ®umin C5(G) — B(L*(G))
satisfying o(z ® y) — M(z)p(y) € K(L*(G)) (see [BO08, Proposition 15.1.4]) does not hold in this setting. Also
the method used in [BO08, Section 15.2] can not be applied, since for a locally compact group G the crossed
product C(X) %, G can be nuclear while G ~ X is not amenable.

Corollary 4.6. Let G = B x4 H be a semi-direct product of lcsc groups with B amenable. Then G is in
class S if and only if H is in class S and there is a Borel map p : B — Prob(H) such that

blim H,u(ozh(b)) —h- ,u(b)H =0 and lim [|pu(aba’) — u(b)|| =0
— 00 b— oo

uniformly on compact sets for h € H and a,a’ € B.

Proof. The only if part is clear. Conversely, let 1 : B — Prob(H) be a map as above. Applying Lemmas 3.4
and 4.3 yields a map fi : B — Prob(G) as in Remark 4.5. Applying Lemma 4.3 to the map n: H — Prob(H)
from the definition of class S and composing it with the projection (b, h) — h yields a map satisfying (4.3). O

We are now ready to prove Theorem D. The suitable notion of wreath products for locally compact groups
was introduced by Cornulier in [Corl7]|. Let B and H be lcsc groups, X a countable set with continuous
action H ~ X and A C B a compact open subgroup. The semi-restricted power BX4 is defined by

BXA = {(bs)zex € BX ‘ b, € A for all but finitely many z € X} .

It is a lcsc space when equipped with the topology generated by the open sets [[,. y Cz where C; C B is
open for every z € X and C, = A for all but finitely many x € X. For b € BX* we denote supp, b =
{r € X | b(x) ¢ A}.

Denote by a the action of H on BX4 by translation, i.e. a(b)(z) = b(h~'z) for b € BX4, h € H and
x € X. It is easy to see that this action is continuous. The (semi-restricted) wreath product By H is now
defined as

Bt H=BYAx, H (4.5)

equipped with the product topology. By [Corl7, Proposition 2.4] it is a lesc group. Theorem D is now a
consequence of the following theorem.
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Theorem 4.7. Let A, B, X and H be as above. Suppose that B is non-compact and |X| > 2. Then, B ZX H
belongs to class S if and only if B is amenable, the stabilizer Staby (x) of every point x € X is amenable and
H belongs to class S.

Proof. If B 234( H belongs to class S, then the subgroups H and B x B do. Hence, B must be amenable. For
every point zg € X the subgroup B X Staby (zg) belongs to class S and since B is non-compact, this implies
the amenability of Staby (xg).

Conversely, suppose that H belongs to class S and that B and all stabilizers Stabg () are amenable.
Denote by X = (J,c; X; the partition of X into the orbits of H ~ X and fix x; € X; for all i € I. Write
B; = BX#4 and H; = Stabgy(z;).

Step 1. Step 1. Each B ZXi H belongs to class S. Fix i € I. To prove this step, we proceed along the lines of
[BOO08, Corollary 15.3.6]. By Lemma 4.3 and Corollary 4.6, it suffices to prove the existence of a continuous
map ¢ : B; — M(H/H;)™ = ¢1(X;)" satisfying

B G ) = G () ] _|IGi(aba’) — G)],
1 = d |
B O R S T3] X

uniformly on compact sets for h € H and a,a’ € B;.

By [Str74] every lesc group G admits a continuous proper length function, i.e. a continuous proper function
(: G — RT satisfying £(gh) < £(g) + ¢(h) and £(g) = ¢(g~") for all g,h € G. Fix such continuous, proper
length functions £5 : B — R and ¢ : H — R™. Define the function

=0 (4.6)

.Y, + . :
[ Xi—>Riz— hlglquH(h)

hx;=xz
Note that f is proper and that f(hz) < ¢g(h) + f(x) for x € X and h € H. Define

g:B—=R":bs iI}éAéB(aba’),

and note that g(bb’) < g(b) + g(t') + N, where N = sup,c 4 ¢5(a).
Define (; : B; — (1(X;)" by

g(b(x)) + f(x) if 2 € supp (D),
0 otherwise

Gi(b)(z) = {

for b € B; and = € X;.
We prove that (; satisfies (4.6). Fix h € H and a,a’,b € B;. Denote b’ = aba’, S = supp 4 b, S' = supp 4 V/
and T = supp4 a Usupp,4 a’. We have

|- ¢(b) D), = Y [f(h ') = f(2)| < |S|Lr(h)

r€hS

and

1K) = COll, =" g @) —go@)|+ > fl)

€T z€TN(SAS’)
<§:(ﬂwu»+gmm»+aw)+ Y. @
zeT z€TN(SAS’)

< <@l + lIK(a)lly, + 2N [T].

So, it suffices to prove that

b
G GO, = o0 and  tim PUEPal_
— 00

b=oo [|Gi(B)ll
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To prove the first, suppose that [|((b)||; < M for some M > 0. Then, f(z) < M and g(b(z)) < M for
every z € supp,(b). Hence, we have b € C =[], x, Cz, where C;, = {b€ B|g(b) < M} forz € F =
{re X | f(z) < M} and C, = A otherwise. Since F' is finite and each C, is compact, it follows that C' is
compact.

Finally, to prove that |supp,4 b|/||(;(b)||; — 0 if b — oo, take b € B such that |supp 4 b|/[|¢;i(b)||; = 0 for
some ¢ > 0. Denote D = {z € X; | f(z) < 2/6}. Then,

2 2 1
5 (Isupp4 ] = D) < Slsupp4 0\ D < G (D)) < 5[suppy b]

and thus | supp 4 b| < 2|D|. We get [|¢;(b)||, < 2|D|. But, by the previous, the set {b € B | [|¢(b)||; < 2|D|/6}
is compact and so is {b € B | |supp 4 b|/|¢: (D), = 6}

Step 2. Step 2. Construction of maps & : B; — Prob(H) satisfying (4.7) below. Fix i € I, ¢ > 0 and a
compact K C H. In this step, we construct a Borel map &; : B; — Prob(H) such that

Hfi(ozh(b)) —h- §Z(b)H <e and &i(aba') = &;(b) (4.7)

for all b € B; \ A%, all h € K and all a,a’ € AXi. Note that the difference with the previous step is that we
want the map &; to satisfy (4.7) for all b € B; \ A%X¢, instead of b € B; \ L for L some (possibly large) compact
set.

Since H; is amenable, the action H ~ H/H; by left translation is amenable. Identifying X; = H/H; and
using Proposition 2.5, we find a map p : X; — Prob(H) such that ||k - pu(z) — p(ha)|| < € for every h € K
and every = € X;. Now, define &; : B; — Prob(H) by

G = ——— S u@)

| supp 4 b sCompms b

for b€ B, \ AXi. For b € B;, set £;(b) = 6.. One easily checks that &; satisfies (4.7).

Step 3. Step 3. B 234( H is bi-ezact. Fix ¢ > 0 and take compact sets C C BX¥4 and K C H. By
Lemma 3.2 and Corollary 4.6, it suffices to prove that there exists a compact set D C BX4 and a Borel map
¢ : BXA — Prob(H) such that

[h-Cb) = C(an(®))]| <& and  [|¢(aba’) — ()] < e (4.8)

forall h € K, a,a’ € C and b € BX4\ D.

Take compact sets C; C B; and a finite subset Iy C I such that C' C [];.; C; and such that C; = A% for
all i € I'\ Iy. For i € Iy, the fact that B ZX H belongs to class S, allows us to take a compact set D; C B; and
a Borel map (; : B; — Prob(H) such that ||k - (;(b) — ¢i(an(b))|| < € and [|¢i(aba’) — (;(b)|| < & for h € K,
a,a’ € C; and b € B; \ D;. By enlarging D;, we can assume that AXi C D; and C’Z._IAXiC'Z._1 C D;. For
i € I\ Iy, we take for ¢; : B; — Prob(H) the map &; from step 2 and set D; = AX:.

For b € BX4 and i € I, we denote by b; € BXi:4 the restriction of b to X;. We also denote I, =
{ieI|b; ¢ A%}, Define ¢ : BX4 — Prob(H) by

for b € BX4\ AX and (;(b) = 6. for b € AX. One easily checks that (4.8) holds for D = [],.; D;, since

Iy = Iy for b € BXA4\ D and a,d’ € C. O

5 Class S is closed under measure equivalence

In this section, we prove Theorem E. As mentioned in the introduction, exactness is preserved under measure
equivalence. So, it suffices to prove that property (S) (i.e. the existence of a map 7 : G — Prob(G) satisfying
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(1.1)) is a measure equivalence invariant. In order to prove that, we will use the characterization of measure
equivalence in terms of cross section equivalence relations from [KKR18, Theorem A] and introduce a notion
of property (S) for these relations.

Recall that a countable, Borel equivalence relation R on a standard probability space (X,u) is an
equivalence relation on X such that R C X x X is a Borel subset and such that all orbits are countable. We
say that R is non-singular for the measure p if u(E) = 0 implies that u([E]g) = 0 for all measurable E C X.
Here, [Elg ={z € X |y € E: x ~r y}. We say that R is ergodic if E = [E]g implies that u(E) = 0 or
w(E) = 1. We denote R = {(x,y,2) | & ~r y ~r 2}.

A Borel subset WW C R is called bounded if the number of elements in its sections is bounded, i.e. if there
exists a C' > 0 such that

W =[{y e X | (z,y) eW} <C and Wy[=[{zeX|(z,y) e W}|<C

for a.e. x,y € X. We say that W is locally bounded if for every € > 0, there exists a Borel subset £ C X with
w(X \ E) < e such that WN (E x E) is bounded.

The full group [R] is the group of all Borel automorphisms ¢ : X — X, identified up to almost everywhere
equality, such that graph ¢ = {(p(z),z)}zcx is contained in R. The full pseudo group [[R]] is the set of all
partial Borel isomorphisms ¢ : A — B for Borel sets A, B C X whose graph is contained in R. Again, these
partial isomorphisms are identified up to almost everywhere equality. Every bounded Borel subset W C R can
be written as a finite union of graphs of elements in [[R]]. For more information about countable equivalence
relations, see for instance [FM77].

Let G be a lesc group and G ~ (X, ) a probability measure preserving (pmp) action. We say that the
action G ~ (X, ) is essentially free if the set

{reX|3geCG:gx=ux}

is a null set. Note that this set is Borel by [MRV13, Lemma 10].

The notion of a cross section equivalence relation was originally introduced by Forrest in [For74]. A more
recent, self-contained treatment for unimodular groups can be found in [KPV15]. Given an essentially free
pmp action G ~ (X, 1) on a standard probability space, a cross section is a Borel subset X; C X with the
following two properties.

(i)  There exists a neighbourhood & C G of identity such that the action map U x X1 — X : (g, ) —
gz is injective.

(ii) The subset G- X; C X is co-null.

By [For74, Theorem 4.2] such a cross section always exists. Note that the first condition implies that the
action map 0 : G x X; — X : (g,z) — gz is countable-to-one and hence maps Borel sets to Borel sets. In
particular, the set G - X; in the second condition is Borel.

By removing a G-invariant null set from X, we can always assume that G - X3 = X and that G ~ X is
really free. Using [Kec95, 18.10 and 18.14], we can take Borel maps 7 : X — X; and v : X — G such that
x =v(x)-w(z) for all x € X. Similarly, denoting by R¢ the image of the map GxX — X xX : (g,2) — (gz, x),
we can take a Borel map w: Rg — G satistying w(z,y)y = « for y € G - z. Moreover, w is a 1-cocycle in the
sense that w(z, y)w(y, z) = w(x,2) for all y,z € G - z.

The cross section equivalence relation associated to X; is defined by

R=ReN(X1 xX1)={(z,y) e X1 x X1 |ye G- X1}.

The measurable space X; admits a unique probability measure p1 and a unique number 0 < covol(X7) < 400
such that

(e @ i) (W) = covol(X7) / W01 (2)] du(z) (5.1)
X
for all measurable W C G x X;. The relation R is a non-singular, countable, Borel equivalence relation for

this probability measure p.
We will use the following easy lemma throughout the rest of this section.
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Lemma 5.1. Let G be a lcsc group and G ~ (X, u) an essentially free, pmp action. Let X1 C X be a cross
section and R the associated cross section equivalence relation.

(a) If K C G is compact, then the set W = {(z,y) € R |w(z,y) € K} is a bounded subset of R.

(b) If W C R is a locally bounded set and € > 0, then there exists a Borel subset E C X; with
v(E) < € such that w(W N (E x E)) is relatively compact.

Proof. Statement (a) follows easily from the fact that there is a neighbourhood of the unit e € G for which
the map U x X1 — X : (g,x) — gz is injective.

Since every bounded Borel subset can be written as a finite union of graphs of elements in [[R]], it suffices
to prove (b) for graph(p) with ¢ € [[R]], but this can be done easily by taking E = {z € X | w(a(z),z) € K}
for K a compact set that is large enough. O

We define property (S) on the level of non-singular, countable, Borel equivalence relations as follows.

Definition 5.2. Let R be a non-singular, countable, Borel equivalence relation on a standard measure space
(X, ). We say that R has property (S) if there exists a Borel map 7 assigning to all (z,y) € R a probability
measure on the orbit of y such that for all € > 0 and ¢, € [R], the set

{(z,y) e R | ||n(e(@), () —n(z,y)|, =<} (5.2)
is locally bounded.

Remark 5.3. To be entirely rigorous, we can view 7 as a Borel map R(?) — [0,1] such that 3 .ex n(z,y,2) =1
zZ~T
for a.e. (z,y) € R.
We prove that the above notion of property (S) is compatible with taking cross section equivalence

relations.

Proposition 5.4. Let G be a lcsc group and G ~ (X, p) an essentially free, ergodic, pmp action. Let X1 C X
be a cross section and R the associated cross section equivalence relation. Then, G has property (S) if and
only if R has property (S).

Proof. As before, we fix Borel maps v: X — G and 7 : X — X such that x = y(z) - n(z) for a.e. z € X.
First, assume that G has property (S). Let n : G — Prob(G) be a map satisfying (1.1). Define for each € X
a map

e G—= X1 g m(g ).

Note that 7, is a Borel map from G to the R-orbit of 7(x). We define the map 7’ as in Definition 5.2 by

' (z,y) = (m2)«n(w(z, )

for (z,y) € R. Note that indeed every n'(x,y) is a probability measure on the R-orbit of z. To prove that
satisfies (5.2), fix £,0 > 0 and ¢, 9 € [R]. It suffices to find a Borel set £ C X; with p; (X1 \ E) < ¢ such
that the set
{(z,y) e RN(Ex E) | ||/ ((2),¥(y)) — (=, y)]|, > e} (53)
is bounded.
By Lemma 5.1, we find a compact set K C G and a measurable E C X; with u1(X; \ E) < ¢
such that w(p(z),z) € K and w(y,¢(y)) € K for all z,y € E. Take a compact set L C G such that
In(gkh) — g-n(k)|]1 < e for all g,h € K and all k € G\ L. We claim that

[ (0(), () = ' (z,), <e (5.4)

whenever (z,y) € RN(E x E) and w(z,y) € G\ L. Assuming the claim is true, the set (5.3) is contained in the
set of all (z,y) € R with w(x,y) € L which is bounded by Lemma 5.1. To prove (5.4), fix (z,y) € RN(E x E)
with w(z,y) € G\ L. We have

|7 (e(x), () =1 (@9, = | (Tp(@))wn(w(e(@), (1)) = (7e)wn(w(z,y) |,
= [n(wle(@), v () —w(e(x),2) -n(w,v)|, <e,
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where we used that m,(g) = () (w(e(x), z)g) and the cocycle identity for w. Hence, (5.4) is proved.
Conversely, assume that R has property (S) and let 1 be a map as in the definition. Choose an arbitrary
& € Prob(G) and define

n' : G — Prob(G) : g — / m(gz), 7(2), 2)w(gz, 2) -{) dp(z).
z€X1

zrvm(x)

We prove that 7 satisfies (1.1). Fix a compact, symmetric neighbourhood K of the unit e in G and an
¢ > 0. Take a compact, symmetric subset L C G such that F' = y~!(L) satisfies u(F) > 1 — ¢. Denote
k = Ag(L)/ covol(Xy). By Lemma 5.1, the set W = {(z,y) € R | w(z,y) € LKL} is bounded Borel. Writing
W as a union of finitely many elements of [[R]] and using (5.2), we see that the set

V={(z,y) € R |3z, "), (y,y) € W, [In(a",/) = n(z, y)ll, > &}

is locally bounded. Denoting § = ¢/ and using Lemma 5.1, we find a compact set C' C G and a measurable
E C Xy with p1(E) > 1 — 6 such that w(V N (E x E)) € C. We conclude that ||n(z’,y') — n(z,y)|, < ¢
whenever (z,y) € RN (E x E) with (z,2') € W, (y,y') € W and w(x,y) € G\ C.

Denote D = LC'L. We conclude the proof by proving that

17 (gkh) — g -0 (k)| < 4K6 + 9 = 13¢ (5.5)

for all g,h € K and k € G\ D. So, fix g,h € K and k € G\ D. Applying the change of variables z — h~1x
and using that w(gkx, z) = gw(kz, z), a straightforward calculation yields

I’ (gkh) — g - ' (k /||77 (ghz), w(h~" 2)) = n(x(kz), 7(x))|, du(z)

Since g, h~! € K, we have that ((gkz),m(kz)) € W and (w(h~'z),7(x)) € W whenever z € X is such that
gkz,h 'z, kx,x € F =~~'(L). Moreover, for such an = we also have w(r(kz),n(z)) € LkL C G\ C. Hence,

|n(m(gka), (k" 2)) — n(w(kz),m(z))||, <e (5.6)

whenever gkz,h 'z, kz,z € F, n(z) € E and 7(kx) € E.

Since pu(F) > 1 — ¢, we can find a measurable set F’ with u(F’) > 1 — 4e such that gkz, h~'z, kz, 2 € F
for every « € F’. Moreover, the map 6 : G x X; — X is injective on the image A of the map = — (y(z), 7(z)).
Hence by (5.1), we have that covol(X1) p(0(U)) = (Ae ® p1)(U) for all U C A. Tt follows that for measurable
S C X1, we have that

w(m1(8) N F) = covol(X1) " (ha x i) (AN (L x 8)) < L)

< ey () = Rim(S).

Applying this to 771(X; \ E) N F and using the definition F’ above, we conclude that (5.6) holds on a set
whose complement has at most measure 4¢ + 2kd and hence that (5.5) holds. O

The proof of Theorem E is now easy.

Proof of Theorem E. As mentioned in the introduction exactness is a measure equivalence invariant by [DL15,
Corollary 2.9] and [DL14, Theorem 0.1 (6)].

The characterization of measure equivalence in terms of stable isomorphism of cross section equivalence
relations (see [KKR18, Theorem A| and [KKR17, Theorem A]) together with Proposition 5.4 yields that
property (S) is preserved under measure equivalence. O
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6 Class S and unique prime factorization

In [HI17], Houdayer and Isono introduce the following property.

Definition 6.1. Let (M, H, J,’B) be a von Neumann algebra in standard form. We say that M satisfies the
strong condition (AO) if there exist C*-algebras A C M and C C B(H) such that

e A is exact and o-weakly dense in M,
e C is nuclear and contains A,
e all commutators [c, JaJ] for ¢ € C and a € A belong to the compact operators K (H).

Note that the definition in [HI17, Definition 2.6] requires A and C to be unital. However, by [BO0S,
Proposition 2.2.1 and Proposition 2.2.4] this is not essential.

In [HI17, Theorems B], Houdayer and Isono provide a unique prime factorization theorem for non-amenable
factors satisfying strong condition (AO). A slightly more general version, removing the condition that the
unknown tensor product factors N; have a state with large centralizers, was later proved by Ando, Haagerup,
Houdayer, and Marrakchi in [AHHM18, Application 4]. Theorem F now follows immediately by combining
these theorems with the following result.

Proposition 6.2. Let G be a lesc group in class S, then its group von Neumann algebra L(G) satisfies strong
condition (AO).

Proof. Recall that L(G) is in standard form on L?(G), where the anti-unitary operator J is given by
(JE)(t) = b (t)~/2€(t~1). Here, where §¢ denotes the modular function of G. Straightforward calculation
yields

(INNIE) = | TWsa(0) s(st) .

Let A = C;(G) be the reduced group C*-algebra of G. Then, obviously A is exact and o-weakly dense
in L(G). By Theorem B and [Ana02, Theorem 5.3], the algebra C'(h*G) x G is nuclear. Now, the inclusion
C(h*G) C C#(G) — B(L*(Q)) together with the unitary representation g — A, induces a *-morphism
7 : C(h"G) x G — B(L*(G)). Let C be the image of this *-morphism. The algebra C is nuclear as a
quotient of a nuclear C*-algebra, and obviously contains A. Note that C. (G, C (h“G)) is a dense subalgebra
in C(h*G) x G. Identifying an element h € C.(G,C(h"G)) C C(h*G) x G with a function on G x G that is
compactly supported in the first component, we get that the action 7(h) on a ¢ € L?(G) is given by

(r())(s) = [ hit,p(es)at.
G
Denote by Cy the image of C..(G,C(h"G)) under 7.

For f € C.(G) and ©(h) € Cy, we prove that T = [r(h), JA(f)J] € K(L*(G)). A straightforward
calculation yields that for £ € L?(G) and s € G, we have

(T¢)(s) = /G /G (h(t,s) — h(t, su)) fu)dc ()2t su) dt du
=/ k(s,u)é(u) du,
G

where

k(s,u) = /G (h(t, s) — h(t, tu)) f(s~1tu)dq (s~ tu)'/? dt.

Let (K,)n be an increasing sequence of compact subsets of G such that G = |J, K. Set k,(s,u) =
Xk, (8)k(s,u) and define the operators T;, € B(L?(G)) by

(Ta6)(s) = /G o (5, 0)E 1) s
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Note that since f € C.(G) and h is compactly supported in the first component, we have that each
k, € L?(G x G) and hence that T, is compact. Moreover, T,, — T in norm. Indeed, if L C G is a compact
subset containing the support of f and of (the first component of) h, then

|IT¢ = Tol> < sup  sup |h(t,s) — h(t, su)|* (L) |TA(F) L]
s€G\K,, t,ueL

= sup  sup |h(t,s) = h(t,su)* w(L)? [|FII5 1€
s€EG\K,, t,ucL

and limsup,_, _ |h(t, s) — h(t,su)|? = 0 uniformly on compact sets for t,u € G. We conclude that T itself is
compact. ]
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