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Introduction

Action
G y (X , µ)

Crossed product
L∞(X ) o G

I Crossed product: M = L∞(X ) o G generated by {ug}g∈G and
L∞(X , µ) such that ug fu∗g = σg (f ) for g ∈ G and f ∈ L∞(X , µ)

Question
When is L∞(X ) o G ∼= L∞(Y ) o H?
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Introduction

Action
G y (X , µ)

Crossed product
L∞(X ) o G

I Crossed product: M = L∞(X ) o G generated by {ug}g∈G and
L∞(X , µ) such that ug fu∗g = σg (f ) for g ∈ G and f ∈ L∞(X , µ)

Standing assumption
I (essentially) free: {x ∈ X | ∃g ∈ G : gx = x} is a null set,
I ergodic: if µ(gA∆A) = 0 for all g ∈ G , then A is null or co-null.
I prob. measure preserving: µ is prob. measure and µ(gA) = µ(A).

L∞(X )× G is a factor
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Countable discrete groups

Countable group Γ
I L∞(X ) o Γ only depends on orbit equivalence relation

R(Γ y X ) = {(gx , x) | x ∈ X , g ∈ Γ}

Three “levels” of isomorphisms Γ y (X , µ), Λ y (Y , ν)

conjugate
Γ y (X , µ) ∼= Λ y (Y , ν)

orbit equivalent
R(Γ y X) ∼= R(Λ y Y )

W*-equivalent
L∞(X) o Γ ∼= L∞(Y ) o Λ

I All R(Γ y X ) (and thus L∞(X ) o Γ) are isomorphic for Γ amenable.

Theorem (Singer, 1955)
If there exists an isomorphism

Ψ : L∞(X ) o Γ ∼−→ L∞(Y ) o Λ satisfying Ψ
(
L∞(X )

)
= L∞(Y ),

then R(Γ y X ) ∼= R(Λ y Y ).
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Countable discrete groups

Cartan subalgebras

Theorem (Singer, 1955)
If there exists an isomorphism

Ψ : L∞(X ) o Γ ∼−→ L∞(Y ) o Λ satisfying Ψ
(
L∞(X )

)
= L∞(Y ),

then R(Γ y X ) ∼= R(Λ y Y ).

I L∞(X ) is a Cartan subalgebra

Definition
A ⊆ M is a Cartan subalgebra if
(i) A is maximal abelian (i.e. A′ ∩M = A),
(ii) NM(A) = {u ∈ M | u unitary, uAu∗ = A} generates M,
(iii) ∃E : M → A conditional expectation.
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Countable discrete groups

Cartan subalgebras

Theorem (Singer, 1955)
If there exists an isomorphism

Ψ : L∞(X ) o Γ ∼−→ L∞(Y ) o Λ satisfying Ψ
(
L∞(X )

)
= L∞(Y ),

then R(Γ y X ) ∼= R(Λ y Y ).

I L∞(X ) is a Cartan subalgebra
if L∞(X ) has unique Cartan subalgebra (up to conjugacy)

R(Γ y X ) ∼= R(Λ y Y ) ⇐⇒ L∞(X ) o Γ ∼= L∞(Y ) o Λ

conjugate
Γ y (X , µ) ∼= Λ y (Y , ν)

orbit equivalent
R(Γ y X) ∼= R(Λ y Y )

W*-equivalent
L∞(X) o Γ ∼= L∞(Y ) o Λ

OE rigidity

Tobe Deprez Rigidity for vNa given by lcsc groups 6 / 21



Countable discrete groups

Uniqueness of Cartan subalgebras

L∞(X ) o Γ has unique Cartan (up to unitary conjugacy) if
I (Ozawa-Popa, 2010) Γ = Fn and Γ y (X , µ) profinite
I (Chifan-Sinclair, 2013) Γ hyperbolic and Γ y (X , µ) profinite
I (Popa-Vaes, 2014) Γ = Fn and Γ y (X , µ) arbitrary
I (Popa-Vaes, 2014) Γ hyperbolic and Γ y (X , µ) arbitrary

Theorem (Gaboriau, 2000)
R(Fn y X ) 6∼= R(Fm y X ) if n 6= m.

Corollary
L∞(X ) o Fn 6∼= L∞(Y ) o Fm if n 6= m.
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Countable discrete groups

Uniqueness of Cartan subalgebras

L∞(X ) o Γ has unique Cartan (up to unitary conjugacy) if
I (Ozawa-Popa, 2010) Γ = Fn and Γ y (X , µ) profinite
I (Chifan-Sinclair, 2013) Γ hyperbolic and Γ y (X , µ) profinite
I (Popa-Vaes, 2014) Γ = Fn and Γ y (X , µ) arbitrary
I (Popa-Vaes, 2014) Γ hyperbolic and Γ y (X , µ) arbitrary

Actually holds for Γ non-amenable, weakly amenable and in Ozawa’s
class S
Definition
Γ belongs to Ozawa’s class S if Γ is exact and ∃η : Γ→ Prob(Γ) such
that

lim
k→∞

‖η(gkh)− g · η(k)‖1 = 0
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Locally compact groups

Locally compact group G

I G lcsc and unimodular
I If G is locally compact, then L∞(X ) is not Cartan in M = L∞(X )oG

BUT: ∃ cross section Y ⊆ X , i.e.
(i) ∃ U ⊆ G neighbourhood of e ∈ G such that U × Y → X : (g , y) 7→ gy

is injective
(ii) G · Y = X (up to null sets)
Then, the cross section equivalence relation

R := R(G y X ) ∩ (Y × Y ) = {(y , z) ∈ Y × Y | ∃g ∈ G : gy = z}

is countable and
M ∼= L(R) ⊗ B(`2(N))

L∞(Y ) ⊗ `∞(N) is Cartan in M
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Locally compact groups Our results

Results - uniqueness of Cartan

Definition
G has property (S) if ∃ a continuous map η : G → S(G) such that

lim
k→∞

‖η(gkh)− g · η(k)‖1 = 0 uniformly on compact sets g , h ∈ G ,

where S(G) =
{
F ∈ L1(G)

∣∣ F (g) > 0; ‖F‖1 = 1
}
.

Theorem (Brothier-D-Vaes)
Let G = G1 × · · · × Gn with Gi non-amenable, weakly amenable and
property (S) and let G y (X , µ) be free, ergodic, pmp. Then, L∞(X ) o G
has unique Cartan up to unitary conjugacy.
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Locally compact groups Our results

Results - uniqueness of Cartan

Theorem (Brothier-D-Vaes)
Let G = G1 × · · · × Gn with Gi non-amenable, weakly amenable and
property (S) and let G y (X , µ) be free, ergodic, pmp. Then, L∞(X ) o G
has unique Cartan up to unitary conjugacy.

Examples
Direct products of

I finite centre connected simple Lie groups of rank 1
e.g. SO(n, 1); SU(n, 1); Sp(n, 1)

I automorphism groups of trees and hyperbolic graphs.
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Locally compact groups Our results

Results - W*-rigidity

Theorem (Brothier-D-Vaes)
Let G = G1 × G2 and H = H1 × H2 be without compact normal
subgroups. Let G y (X , µ) and H y (Y , ν) be free and irreducible.
Suppose that Gi non-amenable and Hi non-amenable, weakly amenable
and with property (S).
If p(L∞(X ) o G)p ∼= q(L∞(Y ) o H)q, then the actions are conjugate.

Recall: If G = G1 × G2, then we say G y (X , µ) is irreducible if
Gi y (X , µ) is ergodic for i = 1, 2.
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Locally compact groups Our results

Results - Strong solidity
Definition
A von Neumann algebra M is strongly solid if for all diffuse, amenable
A ⊆ M with expectation, the normaliser NM(A)′′ remains amenable.

Theorem (Brothier-D-Vaes)
Let G be weakly amenable and with property (S). Suppose L(G) is diffuse
(a) pL(G)p is strongly solid whenever Tr(p) < +∞
(b) If G has CMAP, then L(G) is stably strongly solid (i.e.

L(G) ⊗ B(`2(N)) is strongly solid)

Examples
I (Houdayer-Raum, 2016 and Raum, 2016) criteria for groups G acting

on trees such that L(G) is non-amenable factor.
In particular, Schlichting completion BS(m, n) (2 6 |m| 6 n)

L(G) strongly solid, non-amenable, type III|m/n|
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Locally compact groups About the proof

Dichotomy of (Popa-Vaes, 2014)
Theorem (Popa-Vaes, 2014)
Let Γ be countable, weakly amenable and in Ozawa’s class S (e.g. Γ
hyperbolic). Suppose Γ y (B, τ) trace-preserving. Let M = B o Γ.
If A ⊆ M is amenable relative to B, then

NM(A)′′ remains amenable relative to B,

A �M B.
OR

Proof of uniqueness of Cartan
I Suppose Γ non-amenable, weakly amenable and in Ozawa’s class S

and Γ y (X , µ) p.m.p., free and ergodic.
I Let B = L∞(X ) and M = B o Γ. Then, Γ y B trace preserving.
I For A ⊂ M arbitrary Cartan

NM(A)′′= M remains amenable relative to B,

A �M B =⇒ A = uBu∗ for some u ∈ U(M)
OR
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Locally compact groups About the proof

A more general dichotomy
Definition
Let M be a von Neumann algebra and G a group. A co-action is an
injective, normal ∗-morphism Φ : M → M ⊗ L(G) such that

(Φ⊗ 1)Φ = (1⊗∆)Φ,

where ∆ : L(G)→ L(G)⊗ L(G) is the co-mult. given by ∆(ug ) = ug ⊗ ug .

Theorem (Brothier-D-Vaes)
Let (M,Tr) v.N.a. with semi-finite trace and Φ : M → M ⊗ L(G) a
co-action. Suppose that G is weakly amenable and with property (S).
Suppose Tr(p) < +∞. If A ⊆ pMp is Φ-amenable, then
NpMp(A)′′ remains Φ-amenable,

A can be Φ-embedded.
OR
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Locally compact groups About the proof

A more general dichotomy

Theorem (Brothier-D-Vaes)
Let (M,Tr) v.N.a. with semi-finite trace and Φ : M → M ⊗ L(G) a
co-action. Suppose that G is weakly amenable and with property (S).
Suppose Tr(p) < +∞. If A ⊆ pMp is Φ-amenable, then
NpMp(A)′′ remains Φ-amenable,

A can be Φ-embedded.
OR

Definition
Let A ⊆ pMp von Neumann subalgebra. Consider M-bimodule
H = L2(M)⊗ L2(G) given by x · ξ · y = Φ(x)ξ(y ⊗ 1)
(a) A is Φ-embedded if p · H · p admits a non-zero A-central vector.
(b) A is Φ-amenable if H is left A-amenable, i.e. ∃ pos. lin. functional Ω on

Φ(p)(Mp ⊗ B(L2(G))) that is Φ(A)-central and such that Ω(Φ(x)) = Tr(x) for x ∈ pMp
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Locally compact groups About the proof

Proof of uniqueness of Cartan subalgebra for lc groups
Theorem (Brothier-D-Vaes)
Let G be non-amenable, weakly amenable and property (S) and let
G y (X , µ) be free, ergodic, pmp. Then, L∞(X ) o G has unique Cartan
up to unitary conjugacy.
Proof.

I STP: L(R) has unique Cartan subalgebra for R cross-section eq rel.
I Consider co-action Φ : L(R)→ L(R)⊗ L(G) given by

Φ(f ) = f ⊗ 1,
(
Φ(uϕ)F

)(
x1, x2, h

)
= F (ϕ−1(x1), x2, g−1h)

for f ∈ L∞(X ), ϕ ∈ [R] and F ∈ L2(R)⊗ L2(G) = L2(R× G). Here,
g is such that ϕ−1(x1) = gx1

I For A ⊆ M Cartan subalgebra
NM(A)′′ remains Φ-amenable,

A is Φ-embedded =⇒ A = uL∞(Y )u∗
OR
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Locally compact groups About the proof

Proof of strong solidity

Theorem (Brothier-D-Vaes)
Let G be weakly amenable and with property (S). Suppose M = L(G) is
diffuse. pL(G)p is strongly solid whenever Tr(p) < +∞

Proof.
I Take A ⊆ pMp diffuse, amenable
I Co-action: ∆ : L(G)→ L(G)⊗ L(G) with ∆(ug ) = ug ⊗ ug
I By the dichotomy theorem

A is ∆-embedded

NpMp(A)′′ remains ∆-amenable, =⇒ NpMp(A)′′ is amenable
OR
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Locally compact groups About the proof

Thank you for your attention!
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