

Rigidity for von Neumann algebras given by locally compact groups

Tobe Deprez¹

Joint work with A. Brothier, S. Vaes

KU Leuven

IPAM, Lake arrowhead, 2018

¹Supported by a PhD fellowship of the Research Foundation Flanders (FWO)

Introduction

► Crossed product von Neumann algebra

$L^\infty(X) \rtimes G \subseteq B(L^2(X) \otimes L^2(G))$ generated by

- copy of G : $u_g = \sigma_g \otimes \lambda_g$, where $(\lambda_g f)(h) = f(g^{-1}h)$ and $(\sigma_g a)(x) = f(g^{-1}x)$ for $f \in L^2(G)$, $a \in L^\infty(X)$,
- copy of $L^\infty(X)$: $a \otimes 1$ for $a \in L^\infty(X)$.

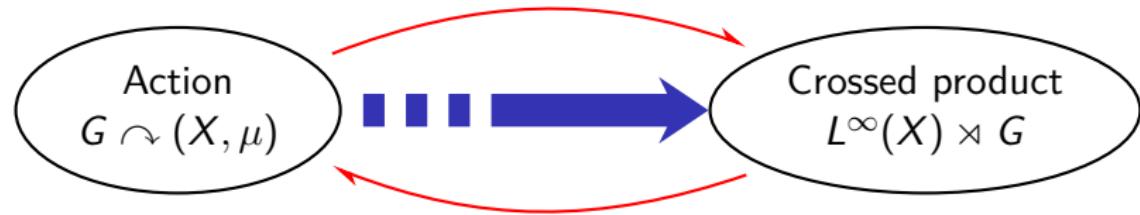
Note: $u_g a u_g^* = \sigma_g(a)$ for $a \in L^\infty(X)$

→ Algebra generated by $\{u_g\}_{g \in G}$ and $L^\infty(X)$:

$$A[G] = \text{span}\{au_g\}_{a \in L^\infty(X), g \in G}$$

→ $L^\infty(X) \rtimes G = \overline{A[G]}^{w.o.} = \overline{\text{span}\{au_g\}_{a \in L^\infty(X), g \in G}}^{w.o.}$

Introduction

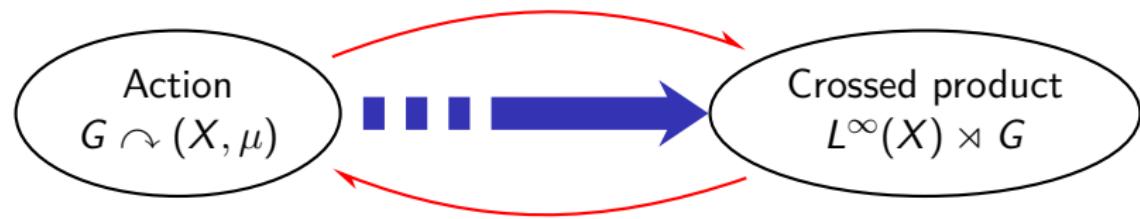


Question

When is $L^\infty(X) \rtimes G \cong L^\infty(Y) \rtimes H$?

- ▶ **(Connes, 1976)** All $L^\infty(X) \rtimes G$ are isomorphic for G discrete amenable
 - e.g. S_∞ , solvable groups
- ▶ **(Popa-Vaes, 2014)** $L^\infty(X) \rtimes \mathbb{F}_n \not\cong L^\infty(Y) \rtimes \mathbb{F}_m$ if $n \neq m$

Introduction



Standing assumption

- ▶ **(essentially) free:** $\{x \in X \mid \exists g \in G : gx = x\}$ is a null set,
- ▶ **ergodic:** if $\mu(gA \Delta A) = 0$ for all $g \in G$, then A is null or co-null.
- ▶ **prob. measure preserving:** μ is prob. measure and $\mu(gA) = \mu(A)$.

→ $L^\infty(X) \rtimes G$ is a factor

Contents

1 Countable discrete groups

2 Non-discrete groups

- Our results
- About the proof

Contents

1 Countable discrete groups

2 Non-discrete groups

- Our results
- About the proof

Countable discrete group Γ

- $L^\infty(X) \rtimes \Gamma$ only depends on **orbit equivalence relation**

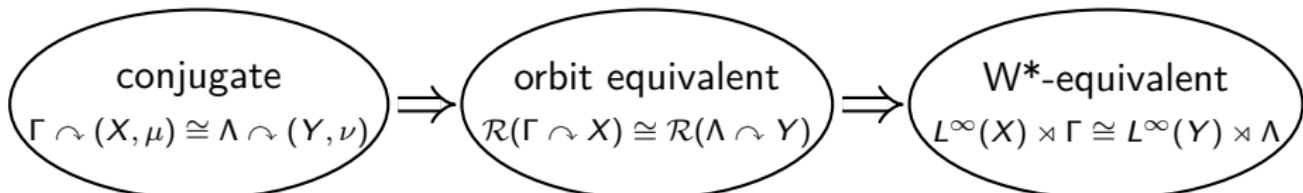
$$\mathcal{R}(\Gamma \curvearrowright X) = \{(gx, x) \mid x \in X, g \in \Gamma\}$$

→ Three “levels” of isomorphisms $\Gamma \curvearrowright (X, \mu)$, $\Lambda \curvearrowright (Y, \nu)$

Definition

$\Gamma \curvearrowright (X, \mu)$ and $\Lambda \curvearrowright (Y, \nu)$ are

- conjugate** if $\exists \varphi : \Gamma \xrightarrow{\sim} \Lambda$ and $\exists \theta : X \xrightarrow{\sim} Y$ such that $\theta(g \cdot x) = \varphi(g) \cdot \theta(x)$
- orbit equivalent** if $\exists \theta : X \xrightarrow{\sim} Y$ such that $\theta(\Gamma x) = \Lambda \theta(x)$
- W^* -equivalent** if $L^\infty(X) \rtimes \Gamma \cong L^\infty(Y) \rtimes \Lambda$



Cartan subalgebras

Theorem (Singer, 1955)

If there exists an isomorphism

$\Psi : L^\infty(X) \rtimes \Gamma \xrightarrow{\sim} L^\infty(Y) \rtimes \Lambda$ satisfying $\Psi(L^\infty(X)) = L^\infty(Y)$,

then $\mathcal{R}(\Gamma \curvearrowright X) \cong \mathcal{R}(\Lambda \curvearrowright Y)$.

► $L^\infty(X)$ is a **Cartan subalgebra**

Definition

$A \subseteq M$ is a **Cartan subalgebra** if

- (i) A is maximal abelian (i.e. $A' \cap M = A$),
- (ii) $\mathcal{N}_M(A) = \{u \in M \mid u \text{ unitary, } uAu^* = A\}$ generates M ,
- (iii) $\exists E : M \rightarrow A$ faithful, normal conditional expectation.

Cartan subalgebras

Theorem (Singer, 1955)

If there exists an isomorphism

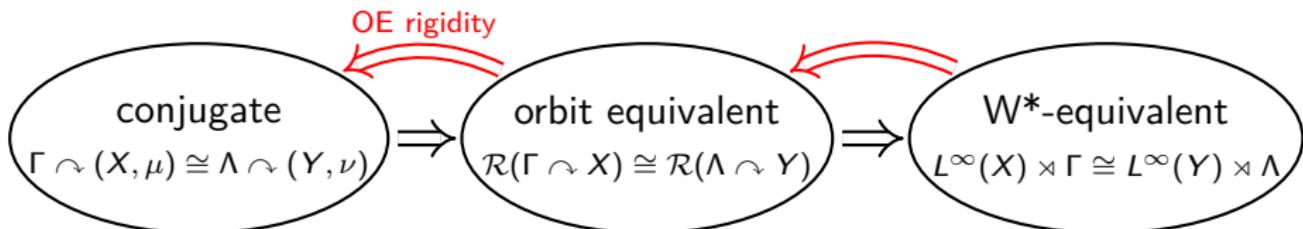
$\Psi : L^\infty(X) \rtimes \Gamma \xrightarrow{\sim} L^\infty(Y) \rtimes \Lambda$ satisfying $\Psi(L^\infty(X)) = L^\infty(Y)$,

then $\mathcal{R}(\Gamma \curvearrowright X) \cong \mathcal{R}(\Lambda \curvearrowright Y)$.

► $L^\infty(X)$ is a **Cartan subalgebra**

→ if $L^\infty(X)$ is unique Cartan subalgebra (up to conjugacy)

$$\mathcal{R}(\Gamma \curvearrowright X) \cong \mathcal{R}(\Lambda \curvearrowright Y) \iff L^\infty(X) \rtimes \Gamma \cong L^\infty(Y) \rtimes \Lambda$$



Uniqueness of Cartan subalgebras

$L^\infty(X) \rtimes \Gamma$ has unique Cartan (up to unitary conjugacy) if

- ▶ **(Ozawa-Popa, 2010)** $\Gamma = \mathbb{F}_n$ and $\Gamma \curvearrowright (X, \mu)$ profinite
- ▶ **(Chifan-Sinclair, 2013)** Γ hyperbolic and $\Gamma \curvearrowright (X, \mu)$ profinite
- ▶ **(Popa-Vaes, 2014)** $\Gamma = \mathbb{F}_n$ and $\Gamma \curvearrowright (X, \mu)$ arbitrary
- ▶ **(Popa-Vaes, 2014)** Γ hyperbolic and $\Gamma \curvearrowright (X, \mu)$ arbitrary

Theorem (Gaboriau, 2000)

$\mathcal{R}(\mathbb{F}_n \curvearrowright X) \not\cong \mathcal{R}(\mathbb{F}_m \curvearrowright X)$ if $n \neq m$.

Corollary

$L^\infty(X) \rtimes \mathbb{F}_n \not\cong L^\infty(Y) \rtimes \mathbb{F}_m$ if $n \neq m$.

Uniqueness of Cartan subalgebras

$L^\infty(X) \rtimes \Gamma$ has unique Cartan (up to unitary conjugacy) if

- ▶ (Ozawa-Popa, 2010) $\Gamma = \mathbb{F}_n$ and $\Gamma \curvearrowright (X, \mu)$ profinite
- ▶ (Chifan-Sinclair, 2013) Γ hyperbolic and $\Gamma \curvearrowright (X, \mu)$ profinite
- ▶ (Popa-Vaes, 2014) $\Gamma = \mathbb{F}_n$ and $\Gamma \curvearrowright (X, \mu)$ arbitrary
- ▶ (Popa-Vaes, 2014) Γ hyperbolic and $\Gamma \curvearrowright (X, \mu)$ arbitrary

Actually holds for Γ non-amenable, weakly amenable and in **Ozawa's class \mathcal{S}**

Definition

Γ belongs to Ozawa's class \mathcal{S} if Γ is exact and $\exists \eta : \Gamma \rightarrow \text{Prob}(\Gamma)$ such that

$$\lim_{k \rightarrow \infty} \|\eta(gkh) - g \cdot \eta(k)\|_1 = 0$$

Contents

1 Countable discrete groups

2 Non-discrete groups

- Our results
- About the proof

Non-discrete group G

- ▶ G locally compact, second countable and unimodular
- ▶ If G is locally compact, then $L^\infty(X)$ is not Cartan in $M = L^\infty(X) \rtimes G$

BUT: \exists **cross section** $Y \subseteq X$, i.e.

- (i) $\exists \mathcal{U} \subseteq G$ neighbourhood of $e \in G$ such that $\mathcal{U} \times Y \rightarrow X : (g, y) \mapsto gy$ is injective
- (ii) $G \cdot Y = X$ (up to null sets)

Then, the **cross section equivalence relation**

$$\mathcal{R} := \mathcal{R}(G \curvearrowright X) \cap (Y \times Y) = \{(y, z) \in Y \times Y \mid \exists g \in G : gy = z\}$$

is countable and

$$M \cong L(\mathcal{R}) \overline{\otimes} B(\ell^2(\mathbb{N}))$$

→ $L^\infty(Y) \overline{\otimes} \ell^\infty(\mathbb{N})$ is Cartan in M

Contents

1 Countable discrete groups

2 Non-discrete groups

■ Our results

■ About the proof

Results - uniqueness of Cartan

Definition

G has property (S) if \exists a continuous map $\eta : G \rightarrow \text{Prob}(G)$ such that

$$\lim_{k \rightarrow \infty} \|\eta(gkh) - g \cdot \eta(k)\|_1 = 0 \quad \text{uniformly on compact sets } g, h \in G.$$

Theorem (Brothier-D-Vaes)

Let $G = G_1 \times \cdots \times G_n$ with G_i non-amenable, weakly amenable and property (S) and let $G \curvearrowright (X, \mu)$ be free, ergodic, pmp. Then, $L^\infty(X) \rtimes G$ has unique Cartan up to unitary conjugacy.

Results - uniqueness of Cartan

Theorem (Brothier-D-Vaes)

Let $G = G_1 \times \cdots \times G_n$ with G_i non-amenable, weakly amenable and property (S) and let $G \curvearrowright (X, \mu)$ be free, ergodic, pmp. Then, $L^\infty(X) \rtimes G$ has unique Cartan up to unitary conjugacy.

Examples

Direct products of

- ▶ finite centre connected simple Lie groups of rank 1
 - e.g. $SO(n, 1)$; $SU(n, 1)$; $Sp(n, 1)$
- ▶ automorphism groups of trees (and hyperbolic graphs).

Results - W^* -rigidity

Theorem (Brothier-D-Vaes)

Let $G = G_1 \times G_2$ and $H = H_1 \times H_2$ be without compact normal subgroups. Let $G \curvearrowright (X, \mu)$ and $H \curvearrowright (Y, \nu)$ be free and irreducible. Suppose that G_i non-amenable and H_i non-amenable, weakly amenable and with property (S).

If $L^\infty(X) \rtimes G \cong L^\infty(Y) \rtimes H$, then the actions are conjugate.

Recall: If $G = G_1 \times G_2$, then we say $G \curvearrowright (X, \mu)$ is irreducible if $G_i \curvearrowright (X, \mu)$ is ergodic for $i = 1, 2$.

Contents

1 Countable discrete groups

2 Non-discrete groups

- Our results

- About the proof

Dichotomy of (Popa-Vaes, 2014)

Theorem (Popa-Vaes, 2014)

Let Γ be countable, weakly amenable and in Ozawa's class \mathcal{S} (e.g. Γ hyperbolic). Suppose $\Gamma \curvearrowright (B, \tau)$ trace-preserving. Let $M = B \rtimes \Gamma$. If $A \subseteq M$ is amenable relative to B , then

$\mathcal{N}_M(A)''$ remains amenable relative to B ,
 OR
 $A \preceq_M B$.

Proof of uniqueness of Cartan

- ▶ Suppose Γ non-amenable, weakly amenable and in Ozawa's class \mathcal{S} and $\Gamma \curvearrowright (X, \mu)$ p.m.p., free and ergodic.
- ▶ Let $B = L^\infty(X)$ and $M = B \rtimes \Gamma$. Then, $\Gamma \curvearrowright B$ trace preserving.
- ▶ For $A \subset M$ arbitrary Cartan

~~$\mathcal{N}_M(A)'' = M$ remains amenable relative to B ,
 OR
 $A \preceq_M B \implies A = uBu^*$ for some $u \in \mathcal{U}(M)$~~

A more general dichotomy

Definition

Let M be a von Neumann algebra and G a group. A **co-action** is an injective, normal $*$ -morphism $\Phi : M \rightarrow M \otimes L(G)$ such that

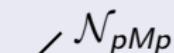
$$(\Phi \otimes 1)\Phi = (1 \otimes \Delta)\Phi,$$

where $\Delta : L(G) \rightarrow L(G) \otimes L(G)$ is the co-mult. given by $\Delta(u_g) = u_g \otimes u_g$.

Theorem (Brothier-D-Vaes)

Let (M, Tr) v.N.a. with semi-finite normal trace and $\Phi : M \rightarrow M \otimes L(G)$ a co-action. Suppose that G is weakly amenable and with property (S).

Suppose $\text{Tr}(p) < +\infty$. If $A \subseteq pMp$ is Φ -amenable, then

 $\mathcal{N}_{pMp}(A)''$ remains Φ -amenable,

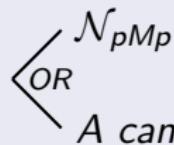
OR

A can be Φ -embedded.

A more general dichotomy

Theorem (Brothier-D-Vaes)

Let (M, Tr) v.N.a. with semi-finite normal trace and $\Phi : M \rightarrow M \otimes L(G)$ a co-action. Suppose that G is weakly amenable and with property (S). Suppose $\text{Tr}(p) < +\infty$. If $A \subseteq pMp$ is Φ -amenable, then


 $\mathcal{N}_{pMp}(A)''$ remains Φ -amenable,
 OR
 A can be Φ -embedded.

Definition

Let $A \subseteq pMp$ von Neumann subalgebra. Consider M -bimodule $\mathcal{H} = L^2(M) \otimes L^2(G)$ given by $x \cdot \xi \cdot y = \Phi(x)\xi(y \otimes 1)$

- (a) A is Φ -embedded if $p \cdot \mathcal{H} \cdot p$ admits a non-zero A -central vector.
- (b) A is Φ -amenable if \mathcal{H} is left A -amenable, i.e. \exists pos. lin. functional Ω on $\Phi(p)(Mp \otimes B(L^2(G)))$ that is $\Phi(A)$ -central and such that $\Omega(\Phi(x)) = \text{Tr}(x)$ for $x \in pMp$

Proof of uniqueness of Cartan subalgebra for lc groups

Theorem (Brothier-D-Vaes)

Let G be non-amenable, weakly amenable and property (S) and let $G \curvearrowright (X, \mu)$ be free, ergodic, pmp. Then, $L^\infty(X) \rtimes G$ has unique Cartan up to unitary conjugacy.

Proof.

- ▶ STP: $L(\mathcal{R})$ has unique Cartan subalgebra for \mathcal{R} cross-section eq rel.
- ▶ Consider co-action $\Phi : L(\mathcal{R}) \rightarrow L(\mathcal{R}) \otimes L(G)$ given by

$$\Phi(f) = f \otimes 1, \quad (\Phi(u_\varphi)F)(x_1, x_2, h) = F(\varphi^{-1}(x_1), x_2, gh)$$

for $f \in L^\infty(X)$, $\varphi \in [\mathcal{R}]$ and $F \in L^2(\mathcal{R}) \otimes L^2(G) = L^2(\mathcal{R} \times G)$. Here, g is such that $\varphi^{-1}(x_1) = gx_1$

- ▶ For $A \subseteq L(\mathcal{R})$ Cartan subalgebra

~~$\mathcal{N}_M(A)''$ remains Φ -amenable,~~
 OR

A is Φ -embedded $\implies A = uL^\infty(Y)u^*$

Thank you for your attention!

References I

A. Connes, Classification of injective factors. Cases II_1 , II_∞ , III_λ , $\lambda \neq 1$. *Ann. Math.* **104** (1976), 73.

I. Chifan and T. Sinclair, On the structural theory of II_1 factors of negatively curved groups. *Ann. Sci. Ecole Norm. S.* **46** (2013), 1–33.

D. Gaboriau, Coût des relations d'équivalence et des groupes. *Invent. Math.* **139** (2000), 41–98.

N. Ozawa and S. Popa, On a class of II_1 factors with at most one Cartan subalgebra. *Ann. Math.* **172** (2010), 713–749.

S. Popa and S. Vaes, Unique Cartan decomposition for II_1 factors arising from arbitrary actions of free groups. *Acta Math.* **212** (2014), 141–198.

References II

S. Popa and S. Vaes, Unique Cartan decomposition for II_1 factors arising from arbitrary actions of hyperbolic groups. *J. Reine Angew. Math.* 2014 (2014), 141–198.

I. M. Singer, Automorphisms of Finite Factors. *Am. J. Math.* 77 (1955), 117–133.