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Introduction

Group G Group von Neumann
algebra L(G)

Action
G y (X , µ)

Crossed product
L∞(X , µ) o G
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Disclaimer

I This talk contains

Lies, white lies, downright lies, exaggeration and a tangled
web of fraud and deception

Vaughan Jones
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Von Neumann algebras

Von Neumann algebras - Definition

I Introduced by John von Neumann
I Motivated by quantum mechanics

I H Hilbert space
I B(H) bounded operators

I For x ∈ B(H) and ξ ∈ H

‖xξ‖ 6 M ‖ξ‖

‖xξ‖ 6 ‖x‖ ‖ξ‖
I Every x ∈ B(H) has an adjoint x∗ satisfying

〈xξ, η〉 = 〈ξ, x∗η〉 for ξ, η ∈ H

Definition
A von Neumann algebra is a ∗-subalgebra M ⊆ B(H) that is closed in the
s.o. topology.

Note: xi → x in s.o. topology if and only if ‖xiξ − xξ‖ → 0 for ξ ∈ HTobe Deprez What is... W*-rigidity? 6 / 32



Von Neumann algebras

Von Neumann algebras - Examples

Definition
A von Neumann algebra is a ∗-subalgebra M ⊆ B(H) that is closed in the
s.o. topology.

Note: xi → x in s.o. topology if and only if ‖xiξ − xξ‖ → 0 for ξ ∈ H

Examples
I B(H) (in part. Mn(C))
I L∞(X , µ) (as subalgebra of B(L2(X , µ))
I The commutant A′ of any set A ⊆ B(H) closed under adjoint

von Neumann’s bicommutant theorem if M ⊆ B(H) is a
von Neumann algebra, then M = (M ′)′
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Von Neumann algebras Group von Neumann algebra
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Von Neumann algebras Group von Neumann algebra

The group von Neumann algebra

Group G Group von Neumann
algebra L(G)

I Left-regular representation λ : G → B(L2(G))

(λg f )(h) = f (g−1h) where f ∈ L2(G), g , h ∈ G

Group algebra C[G ] = span{λg}g∈G
I Group von Neumann algebra:

L(G) = C[G ]s.o. = span{λg}g∈G
s.o.
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Von Neumann algebras Group von Neumann algebra

The group von Neumann algebra

Group G Group von Neumann
algebra L(G)

I (Connes, 1976) all L(G) are isomorphic for G amenable
e.g. S∞, solvable groups, ...
non-e.g. F2

I (Murray and von Neumann, 1943) L(F2) 6∼= L(S∞)
I Open problem: Is L(Fn) ∼= L(Fm) if n 6= m?
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Von Neumann algebras Group von Neumann algebra

Two distinct group von Neumann algebras

I (Murray and von Neumann, 1943) L(F2) 6∼= L(S∞)

Idea of proof.
I In L(S∞): property Γ

I Define gn = (n, n + 1) ∈ S∞.
I For g ∈ S∞, we have gng = ggn for n large

λgλgn = λgnλg for n large

xλgn = λgn x for x ∈ C[G] and n large

(λgn )n “asymptotically commutes” with every x ∈ L(G), i.e.

λgn x − xλgn → 0 if n→∞

I In L(F2): no such sequence exists X
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Von Neumann algebras Group von Neumann algebra

Two distinct group von Neumann algebras

I (Murray and von Neumann, 1943) L(F2) 6∼= L(S∞)

Idea of proof.
I In L(S∞): property Γ

I Define gn = (n, n + 1) ∈ S∞.
I For g ∈ S∞, we have gng = ggn for n large

λgλgn = λgnλg for n large

xλgn = λgn x for x ∈ C[G] and n large

(λgn )n “asymptotically commutes” with every x ∈ L(G), i.e.

λgn x − xλgn → 0 if n→∞

I In L(F2): no such sequence exists X

ON RINGS OF OPERATORS. IV 801 

Let co be the transposition of p + 1 with p + 2. Then co 0 1 and it commutes 
with a ... a~n 

?6.2 We now proceed to establish the decisive negative result. 
LEMMA 6.2.1. Let a group 65 fulfilling (i) in Lemma 5.3.4 be given, which 

possesses this property:71 
(i) There exists a set a, 5 5 with these properties: 

(i1) There exists a cl e 05 such that 

a + cl5cl' = 6- (1). 

(i2) There exists a C2 e 6, such that the three sets cac-i', 1 = 0, i 1 are 
disjoint. 

Then the M of ?5.3 does not possess the property F. 
PROOF. Assume the opposite, i.e. that M possesses the property r. Apply 

Def. 6.1.1 with n = 2. Put A, = Uc,1, A2 = U,2, while e > 0 will be chosen 
subsequently. Form the U = U(A1, A2; E) described there. 

Then we have: 

(6.2.a) Trm(U) = 0 

(6.2.3) [[U1UchU - Uch]] < e for h = 1, 2. 

As UCh X U are both unitary and 

U~ U(U UcAU - Uch) = U - UULTCh . 

(6.2.3) is equivalent to 

(6.2.-y) [[U - U-1UUCA]] < e for h = 1, 2. 

Now determine the arc in the sense of Lemma 5.3.2 for U, Uc 'UUCh 
U-1U 'UUCh in succession. If the first is Oc it is easy to verify that the second 
is Ohcc)-150 and hence the third is G - chcc . Therefore the application of (i) 
in Lemma 5.3.6 to U and to U - U-1UUCA gives 

[[U]]2 = >jCH I GC 

[[U - v11 UUcA]] = ECI I 6C G -chc 
2 

As U is unitary, [[U]]2 = 1. Considering this and (6.2.-y) these equations yield 

(6.2.8) f I C 12 = 1 

(6.2.e) 12 o - oaa I )1 < e for h = 1, 2. 

After these preparations we introduce a measure in S by defining 

V()-= EcZ I Oc I2 for St 6. 

71 This proof copies to a certain extent Hausdorf's famous 1/2 - 1/3 division of the 
sphere. In this connection the use of the free group in Lemma 6.2.2 should be noted. 

This content downloaded from 134.58.253.30 on Fri, 22 May 2015 19:14:16 UTC
All use subject to JSTOR Terms and Conditions

802 F. J. MURRAY AND J. VON NEUMANN 

Then (6.2.6) becomes 

(6.2.s ) v(M5) = 1 

(6.2.a) means 01 = 0 i.e. 

(6.2.7) V ()= 0. 

The triangle inequality in infinitely many dimensions gives 

(Zcf I 0 | ) (EC ) - IChCCI IT I | (ECZ I I | 2). 

The left-hand side is clearly I v - v(ch9ch '1)? 1 . The right-hand side is 
= (ce I C- C ICChY 12) which is <E by (6.2.E). So we have 

(6.2.0) | v(S) - V(ChI-[C | < e 

Now by (6.2.v), v(S) and v(ch5 2j) are ? v(@) = 1. Hence 

|V(S) - V(ChaCh 1) | = | - V(Ch2ICe1)I I (V(f)' + V(ChafCh )I) 

? 2 ( - h 

Therefore (6.2.0) becomes 

(6.2.t) | v(1) - v(chWC 1) I < 2e. 

Let us apply (6.2.t) to 9, c1 a, , c) c2 laC2 , C2 in place of its Af, Ch. Then 

(6.2.K) I v(9) - v(clac-1) I < 2e 
(6.2.X) v(s) - v(c2ac-2) I< 2e 

(6.2.A) I v(c2c2) - v(a) I < 2e 

obtain. Now (ij) and (6.2.v), (6.2.X1) and (6.2.K) give 

v(9) + (v(a) + 2E) > 1 

i.e. 

(6.2.v) v(8) > 2 - E. 

On the other hand (i2) and (6.2.r), (6.2.X) and (6.2.Mi) give 

v(-) + (v(@) - 2E) + (v(8) - 2E) < 1 

i.e. 

(6.2.o) v(s) < 13 + Ace 

(6.2.v) and (6.2.o) imply 

1 - E < 3 + 4E or 1/14 < e. 

Hence it suffices to choose e = 1/14 in order to have a contradiction. 
Thus we have shown that M cannot possess the property F. 
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Von Neumann algebras Group von Neumann algebra

The group von Neumann algebra

Group G Group von Neumann
algebra L(G)

I (Connes, 1976) all L(G) are isomorphic for G amenable
e.g. S∞, solvable groups, ...
non-e.g. F2

I (Murray and von Neumann, 1943) L(F2) 6∼= L(S∞)
I Open problem: Is L(Fn) ∼= L(Fm) if n 6= m?
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Von Neumann algebras Crossed product
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Von Neumann algebras Crossed product

The crossed product

Action
G y (X , µ)

Crossed product
L∞(X ) o G

I G y (X , µ) induces action G yσ L2(X ) by

(σga)(x) = a(g−1x) where a ∈ L2(X ), g ∈ G , x ∈ X

I Recall: G yλ L2(G)

(λg f )(h) = f (g−1h) where f ∈ L2(G), g , h ∈ G

I Consider the following operators on L2(X × G)
I ug = σg × λg

{ug}g∈G copy of G
I Copy of L∞(X ): a × 1 for a ∈ L∞(X )
Tobe Deprez What is... W*-rigidity? 14 / 32



Von Neumann algebras Crossed product

The crossed product L∞(X , µ) o G

Action
G y (X , µ)

Crossed product
L∞(X ) o G

I Consider the following operators on L2(X × G)
I Copy of G : ug = σg × λg
I Copy of L∞(X ): a × 1 for a ∈ L∞(X )

Note: ugau−1
g = σg (a) for a ∈ L∞(X ) and g ∈ G

Algebra generated by {ug}g∈G and L∞(X ):

A[G ] = span{aug}a∈L∞(X),g∈G

Crossed product von Neumann algebra

L∞(X ) o G = A[G ]s.o. = span{aug}a∈L∞(X),g∈G
s.o.
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Von Neumann algebras Crossed product

The crossed product L∞(X , µ) o G

Action
G y (X , µ)

Crossed product
L∞(X ) o G

I L(Z2 o SL2(Z)) ∼= L∞(T2) o L(SL2(Z))
Note: L(Z) ∼= L∞(T2)

I (Connes, 1976) All L∞(X ) o G are isomorphic for G amenable
I (Popa-Vaes, 2014) L∞(X ) o Fn 6∼= L∞(Y ) o Fm if n 6= m
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W*-rigidity

What is... W*-rigidity?

Group /
Action

von Neumann
algebra

W*-rigidity

Examples of W*-rigidity
I (Murray-von Neumann, 1943)L(F2) 6∼= L(S∞)
I (Popa-Vaes, 2014) L∞(X ) o Fn 6∼= L∞(Y ) o Fm if n 6= m

Non-examples of W*-rigidity
I (Connes, 1976) Amenable groups
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W*-rigidity

What is... W*-rigidity?

Group /
Action

von Neumann
algebra

W*-rigidity

Definition
A factor is a von Neumann algebra with center Z(M) = C1.

I L(G) is a factor for G countable, ICC
I ICC: every conjugacy class (except {e}) is infinite

I L∞(X ) o G is a factor if G y (X , µ) is (essentially) free and ergodic
I (essentially) free: {x ∈ X | ∃g ∈ G : gx = x} is a null set
I ergodic: if µ(gA∆A) = 0 for all g ∈ G , then A is null or co-null
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W*-rigidity

What is... W*-rigidity?

Group /
Action

von Neumann
algebra

W*-rigidity
Standing assumptions
I G countable, usually ICC
I G y (X , µ) is free, ergodic and probability measure preserving.

Examples
I G compact group and Γ ⊆ G countable, dense subgroup. Let Γ y G

by left-translation
I Bernoulli action G countable group, (X0, µ0) prob. space. Let

G y (XG
0 , µ

⊗G
0 ) by

h · (xg )g∈G = (xh−1g )g∈G
Tobe Deprez What is... W*-rigidity? 20 / 32



W*-rigidity W*-rigidity for crossed products
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W*-rigidity W*-rigidity for crossed products

W*-rigidity for crossed products

I L∞(X ) o G only depends on “orbit structure”

Definition
G y (X , µ) and H y (Y , ν) are
(a) conjugate if ∃ϕ : G ∼→ H and ∃θ : X ∼→ Y such that

θ(g · x) = ϕ(g) · θ(x)
(b) orbit equivalent if ∃θ : X ∼→ Y such that θ(Gx) = Hθ(x)
(c) W*-equivalent if L∞(X ) o G ∼= L∞(Y ) o H

conjugate
G y (X , µ) ∼= H y (Y , ν)

orbit equivalent
G y (X , µ) OE∼ H y (Y , ν)

W*-equivalent
L∞(X) o G ∼= L∞(Y ) o H

Tobe Deprez What is... W*-rigidity? 22 / 32



W*-rigidity W*-rigidity for crossed products

Cartan subalgebras

Theorem (Singer, 1955)
If there exists an isomorphism

Ψ : L∞(X ) o G ∼−→ L∞(Y ) o H satisfying Ψ
(
L∞(X )

)
= L∞(Y ),

then G y X is orbit equivalent to H y Y .

I L∞(X ) is a Cartan subalgebra

Definition
A ⊆ M is a Cartan subalgebra if
(i) A is maximal abelian (i.e. A′ ∩M = A),
(ii) NM(A) = {u ∈ M | u unitary, uAu∗ = A} generates M,

Tobe Deprez What is... W*-rigidity? 23 / 32



W*-rigidity W*-rigidity for crossed products

Cartan subalgebras

Theorem (Singer, 1955)
If there exists an isomorphism

Ψ : L∞(X ) o G ∼−→ L∞(Y ) o H satisfying Ψ
(
L∞(X )

)
= L∞(Y ),

then G y X is orbit equivalent to H y Y .

I L∞(X ) is a Cartan subalgebra
if L∞(X ) is unique Cartan subalgebra

G y X OE∼ H y Y ⇐⇒ L∞(X ) o G ∼= L∞(Y ) o H

conjugate
G y (X , µ) ∼= H y (Y , ν)

orbit equivalent
G y (X , µ) OE∼ H y (Y , ν)

W*-equivalent
L∞(X) o G ∼= L∞(Y ) o H

OE rigidity
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W*-rigidity W*-rigidity for crossed products

Uniqueness of Cartan subalgebras

L∞(X ) o G has unique Cartan if
I (Ozawa-Popa, 2010) G = Fn and G y (X , µ) profinite
I (Chifan-Sinclair, 2013) G hyperbolic and G y (X , µ) profinite
I (Popa-Vaes, 2014) G = Fn and G y (X , µ) arbitrary
I (Popa-Vaes, 2014) G hyperbolic and G y (X , µ) arbitrary

Theorem (Gaboriau, 2000)
Fn y X is not OE to Fm y Y whenever n 6= m.

Corollary
L∞(X ) o Fn 6∼= L∞(Y ) o Fm if n 6= m.
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W*-rigidity W*-rigidity for crossed products

W*-superrigidity for crossed products

Theorem (Popa, 2006)
Let G be ICC group and G y (X , µ) a Bernoulli action. Let H be a group
with Property (T) and H y (Y , ν) arbitrary.
If L∞(X ) o G ∼= L∞(Y ) o H, then G y (X , µ) is conjugate to H y Y .

Definition
An action G y (X , µ) is W*-superrigid if any action H y (Y , ν) such
that L∞(X ) o G ∼= L∞(Y ) o H is conjugate to G y (X , µ).

I (Peterson, 2010) example of “virtually” W*-superrigid action
I (Popa-Vaes, 2010) family of W*-superrigid actions
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W*-rigidity W*-rigidity for crossed products

W*-rigidity for crossed product of locally compact groups

Theorem (Brothier-D-Vaes)
Let G = G1 × · · · × Gn with

Gi connected, simple Lie group of rank 1,

Gi automorphism group on a tree (or hyperbolic graph)
OR

Let G y (X , µ) be a free, ergodic action. Then, L∞(X ) o G has unique
Cartan.

Theorem (Brothier-D-Vaes)
Let G = G1 × G2 and H = H1 × H2. Let G y (X , µ) and H y (Y , ν) be
free and irreducible. Suppose that Gi are non-amenable and Hi as above.
If L∞(X ) o G ∼= L∞(Y ) o H, then the actions are conjugate

Note: If G = G1 × G2, then we say G y (X , µ) is irreducible if
Gi y (X , µ) is ergodic for i = 1, 2.
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W*-rigidity W*-rigidity for group von Neumann algebras
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W*-rigidity W*-rigidity for group von Neumann algebras

W*-rigidity for L(G)

Much less understood than crossed products

Problem
Is L(Fn) ∼= L(Fm) for n 6= m?

Connes rigidity conjecture (1980)
If G and H are ICC, property (T) groups then L(G) ∼= L(H) implies
G ∼= H.

Definition
G is W*-superrigid if for every group H, we have that L(G) ∼= L(H)
implies G ∼= H.

I (Ioana-Popa-Vaes, 2013) Example of W*-superrigid groups
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W*-rigidity W*-rigidity for group von Neumann algebras

Prime factors

Definition
A factor M is prime if M 6∼= M1 ⊗M2 for (non-trivial) factors Mi .

Examples
I (Ge, 1997) L(Fn) is prime
I (Ozawa, 2004) L(G) is prime for G hyperbolic
I (Brothier-D-Vaes, 2018) L(G) is prime for certain (non-countable)

automorphism groups of trees (or hyperbolic graphs)

Easy fact: L(H1 × H2) ∼= L(H1)⊗ L(H2)

Corollary
Let G be such that L(G) is prime. If L(G) ∼= L(H), then H 6∼= H1 × H2.
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W*-rigidity W*-rigidity for group von Neumann algebras

Unique prime factorisation

Definition
Let M1, . . . ,Mn be prime factors. We say that M1 ⊗ · · · ⊗Mn has unique
prime factorisation if for all prime factors N1, . . . ,Nm satisfying

M1 ⊗ · · · ⊗Mn ∼= N1 ⊗ · · · ⊗ Nm,

we have m = n and Mi ∼=s Ni for i = 1, . . . , n (after renumbering).

Examples
I (Ozawa-Popa, 2004) If G1, . . . ,Gn hyperbolic groups, then

L(G1)⊗ · · · ⊗ L(Gn) has unique prime factorisation
I (D, 2018) Unique prime factorisation for certain non-countable

groups
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W*-rigidity W*-rigidity for group von Neumann algebras

Unique prime factorisation

Corollary
Let G = G1 × · · · × Gn be such that L(G) has unique prime factorisation.
If H = H1 × · · · × Hm with L(Hi ) prime and such that

L(G) = L(G1)⊗ · · · ⊗ L(Gn) ∼= L(H1)⊗ · · · ⊗ L(Hm) = L(H),

then m = n and L(Gi ) ∼=s L(Hi ) for i = 1, . . . , n (after renumbering).

Example
L(F2 × F2) 6∼= L(F2 × F2 × F2)

Theorem (Chifan-de Santiago-Sinclair, 2016)
If G = G1 × · · · × Gn, where Gi ICC, hyperbolic. If L(G) ∼= L(H), then
H = H1 × · · · × Hn.
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W*-rigidity W*-rigidity for group von Neumann algebras

Thank you for your attention!
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