

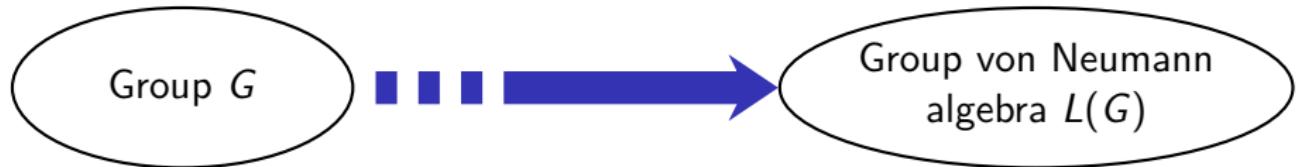
Ozawa's class \mathcal{S} for locally compact groups and unique prime factorization of group von Neumann algebras

Tobe Deprez

Skyline Communications

IPAM, Lake arrowhead, 2019

Group von Neumann algebra



- ▶ Consider left-regular representation $\lambda : G \rightarrow B(L^2(G))$

$$(\lambda_g \xi)(h) = \xi(g^{-1}h) \quad g, h \in G, \xi \in L^2(G)$$

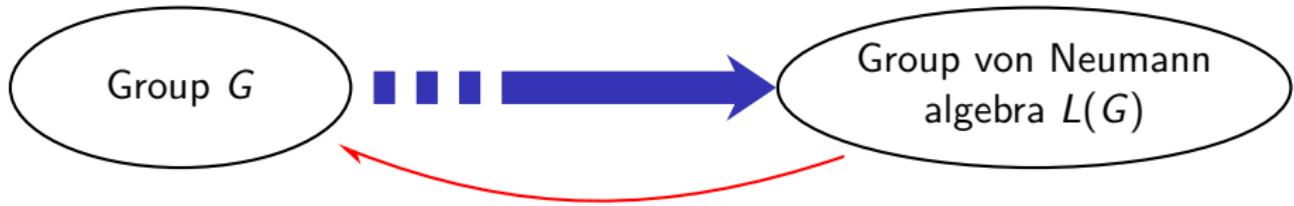
→ Group algebra $\mathbb{C}G = \text{span}\{\lambda_g\}_{g \in G}$

Definition

The **group von Neumann algebra** $L(G)$ is the von Neumann algebra generated by $\mathbb{C}G$, i.e.

$$L(G) = \overline{\mathbb{C}G}^{\text{w.o.}} = \overline{\text{span}\{\lambda_g\}_{g \in G}}^{\text{w.o.}}$$

Problem setting



Question

How much does $L(G)$ “remember” of the structure of G ?

- ▶ **(Connes, 1976)** All $L(G)$ are isomorphic for G countable, amenable, icc
- ▶ **Open problem:** is $L(\mathbb{F}_n) \cong L(\mathbb{F}_m)$ if $n \neq m$?
- ▶ **Ozawa's class \mathcal{S}**
 - ▶ G countable: **(Ozawa, 2004), (Ozawa-Popa, 2004), ...**
 - ▶ G locally compact: this talk

Contents

1 Class \mathcal{S} for countable groups

- Definition
- Applications

2 Topological amenability

3 Class \mathcal{S} for locally compact groups

- Definition
- My results

Contents

1 Class \mathcal{S} for countable groups

- Definition
- Applications

2 Topological amenability

3 Class \mathcal{S} for locally compact groups

- Definition
- My results

Class \mathcal{S} for countable groups

Γ countable group

Definition (Ozawa, 2006)

Γ is in **class \mathcal{S}** (or is **bi-exact**) if Γ is exact and \exists map $\eta : \Gamma \rightarrow \text{Prob}(\Gamma)$ satisfying

$$\|\eta(gkh) - g \cdot \eta(k)\| \rightarrow 0 \quad \text{if } k \rightarrow \infty$$

Examples

► Free groups \mathbb{F}_n

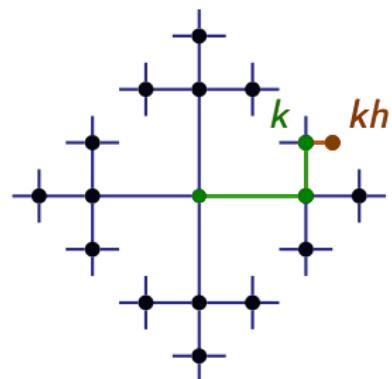
$\eta(k)$ = unif. measure on path e to k

► Right invariance ✓

$\eta(kh) =$ unif. measure path e to kh

$\eta(k) =$ unif. measure path e to k

→ difference: path from k to kh



Class \mathcal{S} for countable groups

Γ countable group

Definition (Ozawa, 2006)

Γ is in **class \mathcal{S}** (or is **bi-exact**) if Γ is exact and \exists map $\eta : \Gamma \rightarrow \text{Prob}(\Gamma)$ satisfying

$$\|\eta(gkh) - g \cdot \eta(k)\| \rightarrow 0 \quad \text{if } k \rightarrow \infty$$

Examples

► Free groups \mathbb{F}_n

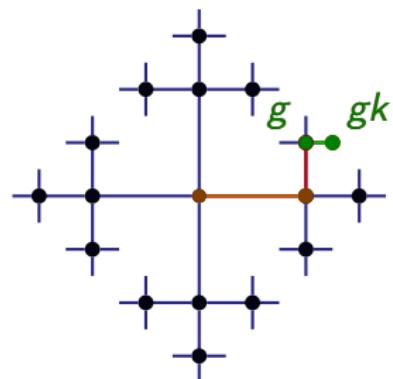
$\eta(k)$ = unif. measure on path e to k

► Left equivariance ✓

$\eta(gk) =$ unif. measure path e to gk

$g \cdot \eta(k) =$ unif. measure path g to gk

→ difference: path from e to g



Class \mathcal{S} for countable groups

Γ countable group

Definition (Ozawa, 2006)

Γ is in **class \mathcal{S}** (or is **bi-exact**) if Γ is exact and \exists map $\eta : \Gamma \rightarrow \text{Prob}(\Gamma)$ satisfying

$$\|\eta(gkh) - g \cdot \eta(k)\| \rightarrow 0 \quad \text{if } k \rightarrow \infty$$

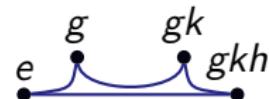
Examples

- ▶ Free groups \mathbb{F}_n
- ▶ Amenable groups
 - ▶ \exists sequence $\mu_n \in \text{Prob}(\Gamma)$

$$\|\mu_n - g \cdot \mu_n\| \rightarrow 0$$

- ▶ Define

$$\eta(k) = \frac{1}{|k|} \sum_{i=|k|+1}^{|2k|} \mu_i$$



Class \mathcal{S} for countable groups

Γ countable group

Definition (Ozawa, 2006)

Γ is in **class \mathcal{S}** (or is **bi-exact**) if Γ is exact and \exists map $\eta : \Gamma \rightarrow \text{Prob}(\Gamma)$ satisfying

$$\|\eta(gkh) - g \cdot \eta(k)\| \rightarrow 0 \quad \text{if } k \rightarrow \infty$$

Examples

- ▶ Free groups \mathbb{F}_n
- ▶ Amenable groups
- ▶ (Adams, 1994) Hyperbolic groups
- ▶ (Skandalis, 1988) Lattices in finite-center, connected, simple Lie groups with real rank 1

Exactness

Definition (Kirchberg-Wasserman, 1999)

Γ is **exact** if for every short exact sequence

$$0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$$

of Γ -C*-algebras, also

$$0 \rightarrow A \rtimes_r \Gamma \rightarrow B \rtimes_r \Gamma \rightarrow C \rtimes_r \Gamma \rightarrow 0$$

is exact.

Examples

- ▶ Almost every group is exact
 - e.g. amenable groups, hyperbolic groups, linear groups, countable subgroups of connected simple Lie groups, ...
- ▶ Examples of non-exact groups: (Gromov, 2003) and (Osajda, 2014)

Contents

1 Class \mathcal{S} for countable groups

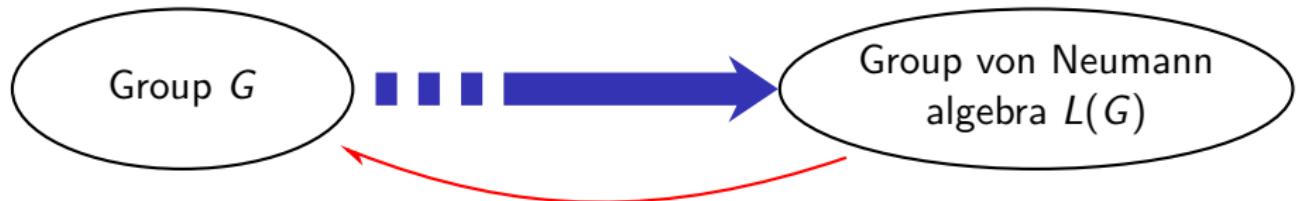
- Definition
- Applications

2 Topological amenability

3 Class \mathcal{S} for locally compact groups

- Definition
- My results

Applications



Theorem (Ozawa, 2004)

$L(\Gamma)$ is **solid** if Γ is in class \mathcal{S} , i.e. for every diffuse $N \subseteq L(\Gamma)$ von Neumann subalgebra, the algebra $N' \cap L(\Gamma)$ is amenable.

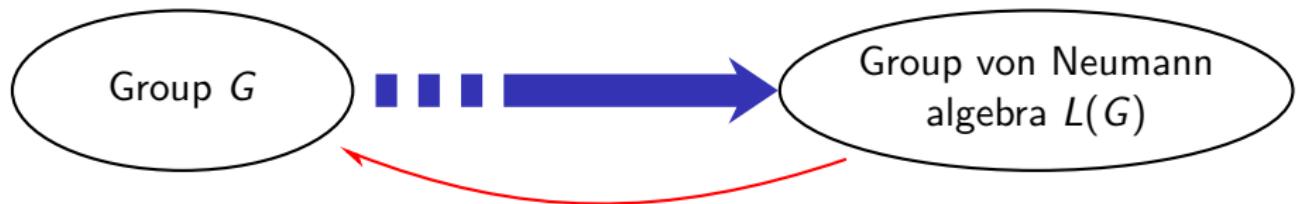
Corollary

$L(\Gamma)$ is **prime** if Γ is non-amenable, icc and in class \mathcal{S} , i.e.

$L(\Gamma) \not\cong M_1 \overline{\otimes} M_2$ if M_1, M_2 non-type I factors.

$$L(\mathbb{F}_2 \times \mathbb{F}_2) = L(\mathbb{F}_2) \overline{\otimes} L(\mathbb{F}_2) \not\cong L(\mathbb{F}_2).$$

Applications



Theorem (Ozawa-Popa, 2004)

Let $\Gamma = \Gamma_1 \times \dots \times \Gamma_n$ with Γ_i non-amenable, icc and in class \mathcal{S} . Then $L(\Gamma) = L(\Gamma_1) \overline{\otimes} \dots \overline{\otimes} L(\Gamma_n)$ has **unique prime factorization (UPF)**, i.e. if

$$L(\Gamma) = N_1 \overline{\otimes} \dots \overline{\otimes} N_m$$

for prime factors N_1, \dots, N_m , then $n = m$ and $N_i \cong_s L(\Gamma_i)$ (after relabeling).

$$\rightarrow L(\mathbb{F}_2 \times \mathbb{F}_2 \times \mathbb{F}_2) \not\cong L(\mathbb{F}_2 \times \mathbb{F}_2).$$

Contents

1 Class \mathcal{S} for countable groups

- Definition
- Applications

2 Topological amenability

3 Class \mathcal{S} for locally compact groups

- Definition
- My results

Topological amenability – Definition

- ▶ G locally compact and second countable
- ▶ X compact topological space, $G \curvearrowright X$ continuous

Definition (Anantharaman-Delaroche, 1987)

$G \curvearrowright X$ is **(topologically) amenable** if \exists weakly* continuous maps $\mu_n : X \rightarrow \text{Prob}(G)$ such that

$$\|\mu_n(g \cdot x) - g \cdot \mu_n(x)\| \rightarrow 0$$

uniformly on X and on compact sets for $g \in G$.

Examples

- ▶ If $X = \{x_0\}$, then $G \curvearrowright X$ is amenable iff G is amenable
- ▶ If X discrete and $G \curvearrowright X$ free, then $G \curvearrowright X$ amenable

$$\mu_n(x) = \delta_x$$

Topological amenability – Example

Definition (Anantharaman-Delaroche, 1987)

$G \curvearrowright X$ is **(topologically) amenable** if $\exists : \mu_n : X \rightarrow \text{Prob}(G)$ of continuous maps such that

$$\|\mu_n(g \cdot x) - g \cdot \mu_n(x)\| \rightarrow 0$$

uniformly on X and on compact sets for $g \in G$.

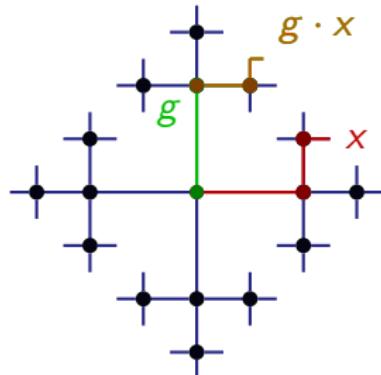
Examples

- $\mathbb{F}_2 \curvearrowright$ boundary of Cayley graph

$\mu_n(x) =$ unif. measure on first n vertices of path e to x

- $\mu_n(g \cdot x) = (\dots)$ path e to $g \cdot x$
- $g \cdot \mu_n(x) = (\dots)$ path g to $g \cdot x$

→ difference: path from e to g



Topological amenability – Example

Definition (Anantharaman-Delaroche, 1987)

$G \curvearrowright X$ is **(topologically) amenable** if $\exists : \mu_n : X \rightarrow \text{Prob}(G)$ of continuous maps such that

$$\|\mu_n(g \cdot x) - g \cdot \mu(x)\| \rightarrow 0$$

uniformly on X and on compact sets for $g \in G$.

Examples

- ▶ $\mathbb{F}_2 \curvearrowright$ boundary of Cayley graph
- ▶ $\Gamma \curvearrowright$ boundary of Cayley graph for Γ hyperbolic

Characterization of class \mathcal{S}

Theorem (Ozawa, 2006)

A countable group Γ belongs to class \mathcal{S} if and only if Γ has amenable action on a boundary that is small at infinity, i.e. \exists compactification $h\Gamma$ of Γ such that

- ▶ *Actions by left and right translation extend to actions on $h\Gamma$,*
- ▶ *Action by right translation is trivial on $\nu\Gamma = h\Gamma \setminus \Gamma$,*
- ▶ *Action by left translation on $\nu\Gamma = h\Gamma \setminus \Gamma$ is topologically amenable.*

Link with C^* -algebras

Consider the following conditions:

- (i) $G \curvearrowright X$ is amenable
- (ii) $C(X) \rtimes G \cong C(X) \rtimes_r G$
- (iii) $C(X) \rtimes_r G$ is nuclear

Theorem (Anantharaman-Delaroche, 1987)

For G countable, we have (i) \Leftrightarrow (ii) \Leftrightarrow (iii)

Theorem (Anantharaman-Delaroche, 2002)

For G locally compact, we have (i) \Rightarrow (ii) \Rightarrow (iii)

Exactness and topological amenability

Definition

A group G is called **exact** if the operation of taking the reduced crossed product preserves short exact sequences.

Consider the following conditions

- (i) G is exact,
- (ii) $G \curvearrowright \beta^{lu} G$ is amenable,
- (iii) $C_r^*(G)$ is exact (i.e. taking minimal tensor product preserves exactness)

Definition

Left-equivariant Stone-Čech compactification $\beta^{lu} G$

$$\begin{array}{ccc}
 G & \xrightarrow{\text{G-equiv f}} & K \\
 i \downarrow & \nearrow \exists! \text{ G-equiv } \beta f & \\
 \beta^{lu} G & & C(\beta^{lu} G) \cong C_b^{lu}(G) \\
 & & = \{f \in C_b(G) \mid \|\lambda_g f - f\|_\infty \rightarrow 0 \text{ if } g \rightarrow e\}
 \end{array}$$

Exactness and topological amenability

Consider the following conditions

- (i) G is exact,
- (ii) $G \curvearrowright \beta^{lu} G$ is amenable,
- (iii) $C_r^*(G)$ is exact (i.e. taking minimal tensor product preserves exactness)

Theorem (Kirchberg-Wasserman, 1999; Ozawa, 2000)

For G countable, we have $(i) \Leftrightarrow (ii) \Leftrightarrow (iii)$

Theorem (Anantharaman-Delaroche, 2002; Brodzki-Cave-Li, 2017)

For G locally compact, we have $(i) \Leftrightarrow (ii) \Rightarrow (iii)$.

► **Remark:** for locally compact $(iii) \Rightarrow (i)$ is open.

Contents

1 Class \mathcal{S} for countable groups

- Definition
- Applications

2 Topological amenability

3 Class \mathcal{S} for locally compact groups

- Definition
- My results

Ozawa's class \mathcal{S} for locally compact groups

Definition (Brothier-D-Vaes, 2018)

A locally compact group G is in **class \mathcal{S}** if G is exact and \exists continuous map $\eta : G \rightarrow \text{Prob}(G)$ satisfying

$$\lim_{k \rightarrow \infty} \|\eta(gkh) - g \cdot \eta(k)\| = 0$$

uniformly on compact sets for $g, h \in G$.

Examples

- ▶ Amenable groups
- ▶ **(Skandalis, 1988)** Finite-center, connected, simple Lie groups of real rank 1
 - e.g. $\text{SL}_2(n, \mathbb{R})$, $\text{SO}(n, 1)$, $\text{SU}(n, 1)$, $\text{Sp}(n, 1)$
- ▶ **(Brothier-D-Vaes, 2018)** Automorphism groups of trees and hyperbolic graphs

Contents

1 Class \mathcal{S} for countable groups

- Definition
- Applications

2 Topological amenability

3 Class \mathcal{S} for locally compact groups

- Definition
- My results

Applications

Theorem (Brothier-D-Vaes, 2018)

Let G be in class \mathcal{S} , then $L(G)$ is **solid**, i.e. for every diffuse $N \subseteq L(G)$ with expectation, we have $N' \cap L(G)$ is amenable.

Corollary

$L(G)$ is **prime** if G is in class \mathcal{S} and $L(G)$ non-amenable factor

Theorem (D, 2019)

Let $G = G_1 \times \cdots \times G_n$ with G_i locally compact groups in class \mathcal{S} and $L(G_i)$ nonamenable factor. Then, $L(G) \cong L(G_1) \otimes \cdots \otimes L(G_n)$ has unique prime factorization, i.e. if

$$L(G) \cong N_1 \otimes \cdots \otimes N_m$$

with N_i prime, then $n = m$ and $L(G_i) \cong_s N_i$ (after relabeling).

Examples

Example (Suzuki)

- ▶ $\mathbb{Z}_2 = \mathbb{Z}/2\mathbb{Z}$ acts on \mathbb{F}_2 by flipping generators
- ▶ $K = \prod_{n \in \mathbb{N}} \mathbb{Z}_2$ acts on $H = *_{n \in \mathbb{N}} \mathbb{F}_2$
- ▶ $G = H \rtimes K$ is in class \mathcal{S} and $L(G)$ is nonamenable factor **(Suzuki, 2016)**

Corollary

$$L(G) \not\cong L(G \times G) \not\cong L(G \times G \times G)$$

Proof of unique prime factorization

Theorem (D)

Let $G = G_1 \times \cdots \times G_n$ with G_i in class \mathcal{S} such that $L(G_i)$ is a nonamenable factor. Then, $L(G) \cong L(G_1) \overline{\otimes} \cdots \overline{\otimes} L(G_n)$ has UPF.

- ▶ Follows from combining
 - ▶ UPF results from **(Houdayer and Isono, 2017)** and **(Ando, Haagerup, Houdayer, and Marrakchi, 2018)**
 - ▶ Locally compact version of characterization of class \mathcal{S}

Theorem (D, 2019)

A locally compact group G belongs to class \mathcal{S} if and only if it has amenable action on a compactification that is small at infinity, i.e. \exists compactification $h^u G$ of G such that

- ▶ Actions by left and right translation extend to actions on $h^u G$,
- ▶ Action by right translation is trivial on $h^u G \setminus G$,
- ▶ Action by left translation on $h^u G$ is topologically amenable.

UPF results from (Houdayer-Isono, 2017)

Theorem (Houdayer-Isono, 2017; Ando, Haagerup, Houdayer, and Marrakchi, 2018)

A von Neumann algebra $M = M_1 \overline{\otimes} \dots \overline{\otimes} M_n$ has unique prime factorization if each M_i is a nonamenable factor satisfying strong condition (AO).

Definition (Houdayer-Isono, 2017)

A von Neumann algebra M with standard representation (M, \mathcal{H}, J, P) satisfies **strong condition (AO)** if there exist C^* -algebras $A \subseteq M$ and $\mathcal{C} \subseteq B(\mathcal{H})$ such that

- (i) A is exact and w.o. dense in M ,
- (ii) \mathcal{C} is nuclear and contains A ,
- (iii) $[\mathcal{C}, JAJ] \subseteq \mathcal{K}(\mathcal{H})$

Proof of unique prime factorization

Theorem (D)

Let $G = G_1 \times \dots \times G_n$ with G_i in class \mathcal{S} such that $L(G_i)$ is a nonamenable factor. Then, $L(G) \cong L(G_1) \overline{\otimes} \dots \overline{\otimes} L(G_n)$ has UPF.

Proof:

STP: Each $L(G_i)$ satisfies strong condition (AO)

- ▶ $A = C_r^*(G_i)$ is exact and w.o. dense in $M = L(G_i)$
- ▶ $\mathcal{C} = ?$
 - ▶ $G_i \curvearrowright h^u G_i$ is topologically amenable
 - ▶ $C(h^u G_i) \rtimes_r G_i \cong C(h^u G_i) \rtimes G_i$ is nuclear
 - ▶ Consider $\pi : C(h^u G_i) \rtimes G_i \rightarrow L^2(G_i)$ induced by covariant rep.
- $$g \mapsto \lambda_g, \quad f \mapsto f|_{G_i} \quad \text{for } f \in C(h^u G_i), g \in G_i$$
- ▶ $\mathcal{C} = \pi(C(h^u G) \rtimes G_i)$
- ▶ $[\mathcal{C}, JAJ] \subseteq \mathcal{K}(\mathcal{H}) \checkmark$

New examples

Theorem (D, 2019)

Locally compact wreath products $B \wr_X^A H$ are in class \mathcal{S} if B is amenable, H in class \mathcal{S} and $H \curvearrowright X$ such that $\text{Stab}_H(x)$ is amenable for all $x \in X$.

- ▶ **(Ozawa, 2006)** same result for discrete groups

Theorem (D, 2019)

Class \mathcal{S} is closed under measure equivalence

- ▶ **(Sako, 2009)** same result for discrete groups

Thank you for your attention!

References I

S. Adams, Boundary amenability for word hyperbolic groups and an application to smooth dynamics of simple groups. *Topology* **33** (1994), 765–783.

C. Anantharaman-Delaroche, Systèmes dynamiques non commutatifs et moyennabilité. *Math. Ann.* **279** (1987), 297–315.

C. Anantharaman-Delaroche, Amenability and exactness for dynamical systems and their C^* -algebras. *T. Am. Math. Soc.* **354** (2002), 4153–4179.

H. Ando, U. Haagerup, C. Houdayer, and A. Marrakchi, Structure of bicentralizer algebras and inclusions of type III factors. 2018. *Preprint.* arXiv: 1804.05706.

References II

J. Brodzki, C. Cave, and K. Li, Exactness of locally compact groups. *Adv. Math.* **312** (2017), 209–233.

A. Brothier, T. Deprez, and S. Vaes, Rigidity for von Neumann algebras given by locally compact groups and their crossed products. *Commun. Math. Phys.* **361** (2018), 85–125.

A. Connes, Classification of injective factors. Cases II_1 , II_∞ , III_λ , $\lambda \neq 1$. *Ann. Math.* **104** (1976), 73–115.

S. Deprez and K. Li, Permanence properties of property A and coarse embeddability for locally compact groups. 2014. *Preprint. arXiv: 1403.7111.*

T. Deprez, Ozawa's class \mathcal{S} for locally compact groups and unique prime factorization of group von Neumann algebras. To appear in *P. Roy. Soc. Edinb. A.*

References III

M. Gromov, Random walk in random groups. *Geom. Funct. Anal.* **13** (2003), 73–146.

C. Houdayer and Y. Isono, Unique prime factorization and bicentralizer problem for a class of type III factors. *Adv. Math.* **305** (2017), 402–455.

E. Kirchberg and S. Wassermann, Exact groups and continuous bundles of C^* -algebras. *Math. Ann.* **315** (1999), 169.

D. Osajda, Small cancellation labellings of some infinite graphs and applications. 2014. *Preprint.* arXiv: 1406.5015.

N. Ozawa, Amenable actions and exactness for discrete groups. *C. R. Acad. Sci. I-Math.* **330** (2000), 691–695.

References IV

N. Ozawa, Solid von Neumann algebras. **Acta Math.** **192** (2004), 111–117.

N. Ozawa, A Kurosh-type theorem for type II_1 factors. **Int. Math. Res. Notices** (2006), 1–21.

N. Ozawa and S. Popa, Some prime factorization results for type II_1 factors. **Invent. Math.** **156** (2004), 223–234.

H. Sako, The class \mathcal{S} as an ME invariant. **Int. Math. Res. Notices** (2009), 2749–2759.

G. Skandalis, Une notion de nucléarité en K-théorie (d'après J. Cuntz). **K-Theory** **1** (1988), 549–573.

Y. Suzuki, Elementary constructions of non-discrete C^* -simple groups. **Proc. Am. Math. Soc.** **145** (2016), 1369–1371.