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Group von Neumann algebra

Group G Group von Neumann
algebra L(G)

I Consider left-regular representation λ : G → B
(
L2(G)

)
(λgξ)(h) = ξ(g−1h) g , h ∈ Γ, ξ ∈ L2(G)

Group algebra CG = span{λg}g∈G

Definition
The group von Neumann algebra L(G) is the von Neumann algebra
generated by CG , i.e.

L(G) = CGw.o. = span{λg}g∈G
w.o.
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Problem setting

Group G Group von Neumann
algebra L(G)

Question
How much does L(G) “remember” of the structure of G?

I (Connes, 1976) All L(G) are isomorphic for G countable, amenable,
icc

I Open problem: is L(Fn) ∼= L(Fm) if n 6= m?

I Ozawa’s class S
I G countable: (Ozawa, 2004), (Ozawa-Popa, 2004), ...
I G locally compact: this talk
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Class S for countable groups Definition

Class S for countable groups
Γ countable group

Definition (Ozawa, 2006)
Γ is in class S (or is bi-exact) if Γ is exact and ∃ map η : Γ→ Prob(Γ)
satisfying

‖η(gkh)− g · η(k)‖ → 0 if k →∞

Examples
I Free groups Fn

η(k) = unif. measure on path e to k
I Right invariance X

η(kh) = unif. measure path e to kh
η(k) = unif. measure path e to k

difference: path from k to kh

kk kkhkh
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Class S for countable groups Definition

Class S for countable groups
Γ countable group

Definition (Ozawa, 2006)
Γ is in class S (or is bi-exact) if Γ is exact and ∃ map η : Γ→ Prob(Γ)
satisfying

‖η(gkh)− g · η(k)‖ → 0 if k →∞

Examples
I Free groups Fn

η(k) = unif. measure on path e to k
I Left equivariance X

η(gk) = unif. measure path e to gk
g · η(k) = unif. measure path g to gk

difference: path from e to g

gg gkgk

Tobe Deprez Class S for locally compact groups 6 / 27



Class S for countable groups Definition

Class S for countable groups
Γ countable group

Definition (Ozawa, 2006)
Γ is in class S (or is bi-exact) if Γ is exact and ∃ map η : Γ→ Prob(Γ)
satisfying

‖η(gkh)− g · η(k)‖ → 0 if k →∞

Examples
I Free groups Fn
I Amenable groups

I ∃ sequence µn ∈ Prob(Γ)
‖µn − g · µn‖ → 0

I Define
η(k) = 1

|k|

|2k|∑
i=|k|+1

µi

e
g gk

gkh
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Class S for countable groups Definition

Class S for countable groups
Γ countable group

Definition (Ozawa, 2006)
Γ is in class S (or is bi-exact) if Γ is exact and ∃ map η : Γ→ Prob(Γ)
satisfying

‖η(gkh)− g · η(k)‖ → 0 if k →∞

Examples
I Free groups Fn
I Amenable groups
I (Adams, 1994) Hyperbolic groups
I (Skandalis, 1988) Lattices in finite-center,

connected, simple Lie groups with real rank 1
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Class S for countable groups Definition

Exactness
Definition (Kirchberg-Wasserman, 1999)
Γ is exact if for every short exact sequence

0→ A→ B → C → 0

of Γ-C∗-algebras, also

0→ Aor Γ→ B or Γ→ C or Γ→ 0

is exact.

Examples
I Almost every group is exact

e.g. amenable groups, hyperbolic groups, linear groups, countable
subgroups of connected simple Lie groups, ...

I Examples of non-exact groups: (Gromov, 2003) and (Osajda, 2014)
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Class S for countable groups Applications

Applications

Group G Group von Neumann
algebra L(G)

Theorem (Ozawa, 2004)
L(Γ) is solid if Γ is in class S, i.e. for every diffuse N ⊆ L(Γ) von Neumann
subalgebra, the algebra N ′ ∩ L(Γ) is amenable.

Corollary
L(Γ) is prime if Γ is non-amenable, icc and in class S, i.e.
L(Γ) 6∼= M1 ⊗ M2 if M1, M2 non-type I factors.

L(F2 × F2) = L(F2) ⊗ L(F2) 6∼= L(F2).
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Class S for countable groups Applications

Applications

Group G Group von Neumann
algebra L(G)

Theorem (Ozawa-Popa, 2004)
Let Γ = Γ1 × · · · × Γn with Γi non-amenable, icc and in class S. Then
L(Γ) = L(Γ1) ⊗ . . . ⊗ L(Γn) has unique prime factorization (UPF), i.e.
if

L(Γ) = N1 ⊗ . . . ⊗ Nm

for prime factors N1, . . . ,Nm, then n = m and Ni ∼=s L(Γi ) (after
relabeling).

L(F2 × F2 × F2) 6∼= L(F2 × F2).
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Topological amenability

Topological amenability – Definition

I G locally compact and second countable
I X compact topological space, G y X continuous

Definition (Anantharaman-Delaroche, 1987)
G y X is (topologically) amenable if ∃ weakly* continuous maps
µn : X → Prob(G) such that

‖µn(g · x)− g · µn(x)‖ → 0

uniformly on X and on compact sets for g ∈ G .

Examples
I If X = {x0}, then G y X is amenable iff G is amenable
I If X discrete and G y X free, then G y X amenable

µn(x) = δx
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Topological amenability

Topological amenability – Example
Definition (Anantharaman-Delaroche, 1987)
G y X is (topologically) amenable if ∃ : µn : X → Prob(G) of
continuous maps such that

‖µn(g · x)− g · µ(x)‖ → 0

uniformly on X and on compact sets for g ∈ G .

Examples
I F2 y boundary of Cayley graph

µn(x) = unif. measure on first n
vertices of path e to x

I µn(g · x) = (...) path e to g · x
I g · µn(x) = (...) path g to g · x

difference: path from e to g

g
x

g · xg · x
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Topological amenability

Topological amenability – Example
Definition (Anantharaman-Delaroche, 1987)
G y X is (topologically) amenable if ∃ : µn : X → Prob(G) of
continuous maps such that

‖µn(g · x)− g · µ(x)‖ → 0

uniformly on X and on compact sets for g ∈ G .

Examples
I F2 y boundary of Cayley graph
I Γ y boundary of Cayley graph for Γ hyperbolic
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Topological amenability

Characterization of class S

Theorem (Ozawa, 2006)
A countable group Γ belongs to class S if and only if Γ has amenable
action on a boundary that is small at infinity, i.e. ∃ compactification hΓ
of Γ such that
I Actions by left and right translation extend to actions on hΓ,
I Action by right translation is trivial on νΓ = hΓ \ Γ,
I Action by left translation on νΓ = hΓ \ Γ is topologically amenable.
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Topological amenability

Link with C∗-algebras

Consider the following conditions:
(i) G y X is amenable
(ii) C(X ) o G ∼= C(X ) or G
(iii) C(X ) or G is nuclear

Theorem (Anantharaman-Delaroche, 1987)
For G countable, we have (i)⇔ (ii)⇔ (iii)

Theorem (Anantharaman-Delaroche, 2002)
For G locally compact, we have (i)⇒ (ii)⇒ (iii)
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Topological amenability

Exactness and topological amenability
Definition
A group G is called exact if the operation of taking the reduced crossed
product preserves short exact sequences.

Consider the following conditions
(i) G is exact,
(ii) G y βluG is amenable,
(iii) C∗r (G) is exact (i.e. taking minimal tensor product preserves

exactness)
Definition
Left-equivariant Stone-Čech compactification βluG

G K

βluG

G-equiv f

i
∃!G-equiv βf

C(βluG) ∼= C lu
b (G)

=
{
f ∈ Cb(G)

∣∣ ‖λg f − f ‖∞ → 0 if g → e
}
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Topological amenability

Exactness and topological amenability

Consider the following conditions
(i) G is exact,
(ii) G y βluG is amenable,
(iii) C∗r (G) is exact (i.e. taking minimal tensor product preserves

exactness)

Theorem (Kirchberg-Wasserman, 1999; Ozawa, 2000)
For G countable, we have (i)⇔ (ii)⇔ (iii)

Theorem (Anantharaman-Delaroche, 2002; Brodzki-Cave-Li, 2017)
For G locally compact, we have (i)⇔ (ii)⇒ (iii).

I Remark: for locally compact (iii)⇒ (i) is open.
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Class S for locally compact groups Definition

Ozawa’s class S for locally compact groups

Definition (Brothier-D-Vaes, 2018)
A locally compact group G is in class S if G is exact and ∃ continuous
map η : G → Prob(G) satisfying

lim
k→∞

‖η(gkh)− g · η(k)‖ = 0

uniformly on compact sets for g , h ∈ G .

Examples
I Amenable groups
I (Skandalis, 1988) Finite-center, connected, simple Lie groups of real

rank 1
e.g. SL2(n,R), SO(n, 1), SU(n, 1), Sp(n, 1)

I (Brothier-D-Vaes, 2018) Automorphism groups of trees and
hyperbolic graphs
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Class S for locally compact groups My results
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Class S for locally compact groups My results

Applications
Theorem (Brothier-D-Vaes, 2018)
Let G be in class S, then L(G) is solid, i.e. for every diffuse N ⊆ L(G)
with expectation, we have N ′ ∩ L(G) is amenable.

Corollary
L(G) is prime if G is in class S and L(G) non-amenable factor

Theorem (D, 2019)
Let G = G1 × · · · × Gn with Gi locally compact groups in class S and
L(Gi ) nonamenable factor. Then, L(G) ∼= L(G1)⊗ · · · ⊗ L(Gn) has unique
prime factorization, i.e. if

L(G) ∼= N1 ⊗ · · · ⊗ Nm

with Ni prime, then n = m and L(Gi ) ∼=s Ni (after relabeling).
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Class S for locally compact groups My results

Examples

Example (Suzuki)
I Z2 = Z/2Z acts on F2 by flipping generators

K =
∏

n∈N Z2 acts on H = ∗n∈N F2
I G = H o K is in class S and L(G) is nonamenable factor (Suzuki,

2016)

Corollary
L(G) 6∼= L(G × G) 6∼= L(G × G × G)
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Class S for locally compact groups My results

Proof of unique prime factorization
Theorem (D)
Let G = G1 × · · · × Gn with Gi in class S such that L(Gi ) is a
nonamenable factor. Then, L(G) ∼= L(G1) ⊗ . . . ⊗ L(Gn) has UPF.

I Follows from combining
I UPF results from (Houdayer and Isono, 2017) and (Ando,

Haagerup, Houdayer, and Marrakchi, 2018)
I Locally compact version of characterization of class S

Theorem (D, 2019)
A locally compact group G belongs to class S if and only if it has
amenable action on a compactification that is small at infinity, i.e. ∃
compactification huG of G such that
I Actions by left and right translation extend to actions on huG,
I Action by right translation is trivial on huG \ G,
I Action by left translation on huG is topologically amenable.
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Class S for locally compact groups My results

UPF results from (Houdayer-Isono, 2017)

Theorem (Houdayer-Isono, 2017; Ando, Haagerup, Houdayer, and
Marrakchi, 2018)
A von Neumann algebra M = M1 ⊗ . . . ⊗ Mn has unique prime
factorization if each Mi is a nonamenable factor satisfying strong condition
(AO).

Definition (Houdayer-Isono, 2017)
A von Neumann algebra M with standard representation (M,H, J ,P)
satisfies strong condition (AO) if there exist C∗-algebras A ⊆ M and
C ⊆ B(H) such that
(i) A is exact and w.o. dense in M,
(ii) C is nuclear and contains A,
(iii) [C, JAJ ] ⊆ K(H)
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Class S for locally compact groups My results

Proof of unique prime factorization

Theorem (D)
Let G = G1 × · · · × Gn with Gi in class S such that L(Gi ) is a
nonamenable factor. Then, L(G) ∼= L(G1) ⊗ . . . ⊗ L(Gn) has UPF.

Proof:
STP: Each L(Gi ) satisfies strong condition (AO)
I A = C∗r (Gi ) is exact and w.o. dense in M = L(Gi )
I C =?

I Gi y huGi is topologically amenable
C(huGi ) or Gi ∼= C(huGi ) o Gi is nuclear

I Consider π : C(huGi ) o Gi → L2(Gi ) induced by covariant rep.
g 7→ λg , f 7→ f |Gi for f ∈ C(huGi ), g ∈ Gi

I C = π(C(huG) o Gi )
I [C, JAJ ] ⊆ K(H) X
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Class S for locally compact groups My results

New examples

Theorem (D, 2019)
Locally compact wreath products B oAX H are in class S if B is amenable, H
in class S and H y X such that StabH(x) is amenable for all x ∈ X.

I (Ozawa, 2006) same result for discrete groups

Theorem (D, 2019)
Class S is closed under measure equivalence

I (Sako, 2009) same result for discrete groups
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Class S for locally compact groups My results

Thank you for your attention!
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